Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(9): 2644-51, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25646490

RESUMO

Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper.


Assuntos
Chlamydomonas/metabolismo , Cobre/metabolismo , Consumo de Oxigênio/fisiologia , Fotossíntese/fisiologia , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Chlamydomonas/genética , Citocromos c6/genética , Citocromos c6/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Plastocianina/genética , Plastocianina/metabolismo
2.
Genetics ; 187(3): 793-802, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21220358

RESUMO

In plastids, the conversion of energy in the form of light to ATP requires key electron shuttles, the c-type cytochromes, which are defined by the covalent attachment of heme to a CXXCH motif. Plastid c-type cytochrome biogenesis occurs in the thylakoid lumen and requires a system for transmembrane transfer of reductants. Previously, CCDA and CCS5/HCF164, found in all plastid-containing organisms, have been proposed as two components of the disulfide-reducing pathway. In this work, we identify a small novel protein, CCS4, as a third component in this pathway. CCS4 was genetically identified in the green alga Chlamydomonas reinhardtii on the basis of the rescue of the ccs4 mutant, which is blocked in the synthesis of holoforms of plastid c-type cytochromes, namely cytochromes f and c(6). Although CCS4 does not display sequence motifs suggestive of redox or heme-binding function, biochemical and genetic complementation experiments suggest a role in the disulfide-reducing pathway required for heme attachment to apoforms of cytochromes c. Exogenous thiols partially rescue the growth phenotype of the ccs4 mutant concomitant with recovery of holocytochrome f accumulation, as does expression of an ectopic copy of the CCDA gene, encoding a trans-thylakoid transporter of reducing equivalents. We suggest that CCS4 might function to stabilize CCDA or regulate its activity.


Assuntos
Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Grupo dos Citocromos c/biossíntese , Grupo dos Citocromos c/metabolismo , Citocromos c/genética , Citocromos c/metabolismo , Fotossíntese/genética , Sequência de Aminoácidos , Cloroplastos/genética , Cloroplastos/metabolismo , Grupo dos Citocromos c/genética , Citocromos f/genética , Citocromos f/metabolismo , Dissulfetos/metabolismo , Heme/genética , Heme/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxirredução , Plastídeos/genética , Plastídeos/metabolismo , Tilacoides/genética , Tilacoides/metabolismo
3.
J Biol Chem ; 278(4): 2604-13, 2003 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-12427747

RESUMO

The Ccs1 gene, encoding a highly divergent novel component of a system II type c-type cytochrome biogenesis pathway, is encoded by the previously defined CCS1 locus in Chlamydomonas reinhardtii. phoA and lacZalpha bacterial topological reporters were used to deduce a topological model of the Synechocystis sp. 6803 Ccs1 homologue, CcsB. CcsB, and therefore by analogy Ccs1, possesses a large soluble lumenal domain at its C terminus that is tethered in the thylakoid membrane by three closely spaced transmembrane domains in the N-terminal portion of the protein. Molecular analysis of ccs1 alleles reveals that the entire C-terminal soluble domain is essential for Ccs1 function and that a stromal loop appears to be important in vivo, at least for maintenance of Ccs1. Site-directed mutational analysis reveals that a single histidine (His(274)) within the last transmembrane domain, preceding the large lumenal domain, is required for c-type cytochrome assembly, whereas an invariant cysteine residue (Cys(199)) is shown to be non-essential. Ccs1 is proposed to interact with other Ccs components based on its reduced accumulation in ccs2, ccs3, ccs4, and ccsA strains.


Assuntos
Citocromos/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/fisiologia , Alelos , Sequência de Aminoácidos , Animais , Southern Blotting , Membrana Celular/metabolismo , Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos , Genes Reporter , Teste de Complementação Genética , Histidina/química , Modelos Genéticos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Proteínas de Plantas , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , RNA/metabolismo , Tilacoides/metabolismo , Fatores de Tempo
4.
Eukaryot Cell ; 1(5): 736-57, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12455693

RESUMO

The unicellular green alga Chlamydomonas reinhardtii is a valuable model for studying metal metabolism in a photosynthetic background. A search of the Chlamydomonas expressed sequence tag database led to the identification of several components that form a copper-dependent iron assimilation pathway related to the high-affinity iron uptake pathway defined originally for Saccharomyces cerevisiae. They include a multicopper ferroxidase (encoded by Fox1), an iron permease (encoded by Ftr1), a copper chaperone (encoded byAtx1), and a copper-transporting ATPase. A cDNA, Fer1, encoding ferritin for iron storage also was identified. Expression analysis demonstrated that Fox1 and Ftrl were coordinately induced by iron deficiency, as were Atx1 and Fer1, although to lesser extents. In addition, Fox1 abundance was regulated at the posttranscriptional level by copper availability. Each component exhibited sequence relationship with its yeast, mammalian, or plant counterparts to various degrees; Atx1 of C. reinhardtii is also functionally related with respect to copper chaperone and antioxidant activities. Fox1 is most highly related to the mammalian homologues hephaestin and ceruloplasmin; its occurrence and pattern of expression in Chlamydomonas indicate, for the first time, a role for copper in iron assimilation in a photosynthetic species. Nevertheless, growth of C. reinhardtii under copper- and iron-limiting conditions showed that, unlike the situation in yeast and mammals, where copper deficiency results in a secondary iron deficiency, copper-deficient Chlamydomonas cells do not exhibit symptoms of iron deficiency. We propose the existence of a copper-independent iron assimilation pathway in this organism.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Cobre/metabolismo , Ferro/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Algas/química , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Chlamydomonas reinhardtii/genética , Ferritinas/genética , Ferritinas/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Fotossíntese , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA