Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant J ; 114(4): 729-742, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36974032

RESUMO

Improving crop yield potential through an enhanced response to rising atmospheric CO2 levels is an effective strategy for sustainable crop production in the face of climate change. Large-sized panicles (containing many spikelets per panicle) have been a recent ideal plant architecture (IPA) for high-yield rice breeding. However, few breeding programs have proposed an IPA under the projected climate change. Here, we demonstrate through the cloning of the rice (Oryza sativa) quantitative trait locus for MORE PANICLES 3 (MP3) that the improvement in panicle number increases grain yield at elevated atmospheric CO2 levels. MP3 is a natural allele of OsTB1/FC1, previously reported as a negative regulator of tiller bud outgrowth. The temperate japonica allele advanced the developmental process in axillary buds, moderately promoted tillering, and increased the panicle number without negative effects on the panicle size or culm thickness in a high-yielding indica cultivar with large-sized panicles. The MP3 allele, containing three exonic polymorphisms, was observed in most accessions in the temperate japonica subgroups but was rarely observed in the indica subgroup. No selective sweep at MP3 in either the temperate japonica or indica subgroups suggested that MP3 has not been involved and utilized in artificial selection during domestication or breeding. A free-air CO2 enrichment experiment revealed a clear increase of grain yield associated with the temperate japonica allele at elevated atmospheric CO2 levels. Our findings show that the moderately increased panicle number combined with large-sized panicles using MP3 could be a novel IPA and contribute to an increase in rice production under climate change with rising atmospheric CO2 levels.


Assuntos
Oryza , Dióxido de Carbono , Alelos , Melhoramento Vegetal , Grão Comestível/genética
2.
Physiol Plant ; 174(2): e13644, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35112363

RESUMO

The recovery from photoinhibition is much slower in photosystem (PS) I than in PSII; therefore, the susceptibility of PSI to photoinhibition is important with respect to photosynthetic production under special physiological conditions. Previous studies have shown that repetitive short-pulse (rSP) illumination selectively induces PSI photoinhibition. Depending on the growth light intensity or the variety/species of the plant, PSI photoinhibition is different, but the underlying mechanisms remain unknown. Here, we aimed to clarify whether the differences in the susceptibility of PSI to photoinhibition depend on environmental factors or on rice varieties and which physiological properties of the plant are related to this susceptibility. We exposed mature leaves of rice plants to rSP illumination. We examined the effects of elevated CO2 concentration and low N during growth on the susceptibility of PSI to photoinhibition and compared it in 12 different varieties. We fitted the decrease in the quantum yield of PSI during rSP illumination and estimated a parameter indicating susceptibility. Low N level increased susceptibility, whereas elevated CO2 concentration did not. The susceptibility differed among different rice varieties, and many indica varieties showed higher susceptibility than the temperate japonica varieties. Susceptibility was negatively correlated with the total chlorophyll content and N content. However, the decrease in P m ' value, an indicator of damaged PSI, was positively correlated with chlorophyll content. This suggests that in leaves with a larger electron transport capacity, the overall PSI activity may be less susceptible to photoinhibition, but more damaged PSI may accumulate during rSP illumination.


Assuntos
Oryza , Complexo de Proteína do Fotossistema II , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Clorofila , Luz , Oryza/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/fisiologia
3.
Front Plant Sci ; 11: 786, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582271

RESUMO

Atmospheric CO2 concentration ([CO2]) has been substantially increasing. Responses of leaf photosynthesis to elevated [CO2] have been intensively investigated because leaf photosynthesis is one of the most important determinants of crop yield. The responses of photosynthesis to elevated [CO2] can depend on nitrogen (N) availability. Here, we aimed to investigate the significance of the appropriate balance between two photosystems [photosystem I (PSI) and photosystem II (PSII)] under various [CO2] and N levels, and thus to clarify if responses of photosynthetic electron transport rates (ETRs) of the two photosystems to elevated [CO2] are altered by N availability. Thus, we examined parameters of the two photosystems in mature leaves of rice plants grown under two [CO2] levels (ambient and 200 µmol mol-1 above ambient) and three N fertilization levels at the Tsukuba free-air CO2 enrichment experimental facility in Japan. Responses of ETR of PSII (ETRII) and ETR of PSI (ETRI) to [CO2] levels differed among N levels. When moderate levels of N were applied (MN), ETRI was higher under elevated [CO2], whereas at high levels of N were applied (HN), both ETRII and ETRI were lower under elevated [CO2] compared with ambient [CO2]. Under HN, the decreases in ETRII and ETRI under elevated [CO2] were due to increases in the non-photochemical quenching of PSII [Y(NPQ)] and the donor side limitation of PSI [Y(ND)], respectively. The relationship between the effective quantum yields of PSI [Y(I)] and PSII [Y(II)] changed under elevated [CO2] and low levels of N (LN). Under both conditions, the ratio of Y(I) to Y(II) was higher than under other conditions. The elevated [CO2] and low N changed the balance of the two photosystems. This change may be important because it can induce the cyclic electron flow around PSI, leading to induction of non-photochemical quenching to avoid photoinhibition.

4.
Front Plant Sci ; 10: 361, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024578

RESUMO

Enhancing crop yield response to elevated CO2 concentrations (E-[CO2]) is an important adaptation measure to climate change. A high-yielding indica rice cultivar "Takanari" has recently been identified as a potential candidate for high productivity in E-[CO2] resulting from its large sink and source capacities. To fully utilize these traits, nitrogen should play a major role, but it is unknown how N levels influence the yield response of Takanari to E-[CO2]. We therefore compared grain yield and quality of Takanari with those of Koshihikari, a standard japonica cultivar, in response to Free-Air CO2 enrichment (FACE, +200 µmol mol-1) under three N levels (0, 8, and 12 g m-2) over three seasons. The biomass of both cultivars increased under E-[CO2] at all N levels; however, the harvest index decreased under E-[CO2] in the N-limited treatment for Koshihikari but not for Takanari. The decreased harvest index of Koshihikari resulted from limited enhancement of spikelet number under N-limitation. In contrast, spikelet number increased in E-[CO2] in Takanari even without N application, resulting in significant yield enhancement, averaging 18% over 3 years, whereas Koshihikari exhibited virtually no increase in yield in E-[CO2] under the N-limited condition. Grain appearance quality of Koshihikari was severely reduced by E-[CO2], most notably in N-limited and hot conditions, by a substantial increase in chalky grain, but chalky grain % did not increase in E-[CO2] even without N fertilizer. These results indicated that Takanari could retain its high yield advantage over Koshihikari with limited increase in chalkiness even under limited N conditions and that it could be a useful genetic resource for improving N use efficiency under E-[CO2].

5.
Plant Cell Physiol ; 59(3): 637-649, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29401364

RESUMO

Respiratory CO2 efflux and O2 uptake rates in leaves change in response to the growth CO2 concentration ([CO2]). The degrees of change vary depending on the responses of cellular processes such as nitrogen (N) assimilation and accumulation of organic acids to growth [CO2]. However, the underlying mechanisms remain unclear. Here, we examined the respiratory characteristics of mature leaves of two rice varieties with different yield capacities at different growth stages under ambient and elevated [CO2] conditions at a free-air CO2 enrichment site. We also examined the effect of increased water temperature on leaf respiration. We measured the rates of CO2 efflux and O2 uptake, and determined N contents, primary metabolite contents and maximal activities of respiratory enzymes. The leaf CO2 efflux rates decreased in plants grown at elevated [CO2] in both varieties, and were higher in high-yielding Takanari than in Koshihikari. The leaf O2 uptake rates showed little change with respect to growth [CO2] and variety. The increased water temperature did not significantly affect the CO2 efflux and O2 uptake rates. The N and amino acid contents were significantly higher in Takanari than in Koshihikari. The enhanced N assimilation in Takanari may have consumed more respiratory NADH, leading to higher CO2 efflux rates. In Koshihikari, the ratio of tricarboxylic acid (TCA) cycle intermediates changed and maximal activities of enzymes in the TCA cycle decreased at elevated [CO2]. Therefore, the decreased rates of CO2 efflux in Koshihikari may be due to the decreased activities of TCA cycle enzymes at elevated [CO2].


Assuntos
Atmosfera/química , Dióxido de Carbono/farmacologia , Oryza/fisiologia , Folhas de Planta/fisiologia , Aminoácidos/metabolismo , Respiração Celular/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Metaboloma , Nitrogênio/metabolismo , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oxigênio/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Temperatura
6.
Glob Chang Biol ; 24(3): 1321-1341, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29136323

RESUMO

Achieving higher canopy photosynthesis rates is one of the keys to increasing future crop production; however, this typically requires additional water inputs because of increased water loss through the stomata. Lowland rice canopies presently consume a large amount of water, and any further increase in water usage may significantly impact local water resources. This situation is further complicated by changing the environmental conditions such as rising atmospheric CO2 concentration ([CO2 ]). Here, we modeled and compared evapotranspiration of fully developed rice canopies of a high-yielding rice cultivar (Oryza sativa L. cv. Takanari) with a common cultivar (cv. Koshihikari) under ambient and elevated [CO2 ] (A-CO2 and E-CO2 , respectively) via leaf ecophysiological parameters derived from a free-air CO2 enrichment (FACE) experiment. Takanari had 4%-5% higher evapotranspiration than Koshihikari under both A-CO2 and E-CO2 , and E-CO2 decreased evapotranspiration of both varieties by 4%-6%. Therefore, if Takanari was cultivated under future [CO2 ] conditions, the cost for water could be maintained at the same level as for cultivating Koshihikari at current [CO2 ] with an increase in canopy photosynthesis by 36%. Sensitivity analyses determined that stomatal conductance was a significant physiological factor responsible for the greater canopy photosynthesis in Takanari over Koshihikari. Takanari had 30%-40% higher stomatal conductance than Koshihikari; however, the presence of high aerodynamic resistance in the natural field and lower canopy temperature of Takanari than Koshihikari resulted in the small difference in evapotranspiration. Despite the small difference in evapotranspiration between varieties, the model simulations showed that Takanari clearly decreased canopy and air temperatures within the planetary boundary layer compared to Koshihikari. Our results indicate that lowland rice varieties characterized by high-stomatal conductance can play a key role in enhancing productivity and moderating heat-induced damage to grain quality in the coming decades, without significantly increasing crop water use.


Assuntos
Dióxido de Carbono/farmacologia , Oryza/efeitos dos fármacos , Oryza/fisiologia , Fotossíntese/efeitos dos fármacos , Água/metabolismo , Folhas de Planta/fisiologia , Temperatura
7.
Sci Rep ; 7(1): 1827, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28500344

RESUMO

The global atmospheric CO2 concentration has been increasing annually. To determine the trait that effectively increases rice (Oryza sativa L.) grain yield under increased atmospheric CO2 concentrations, as predicted in the near future, we grew a chromosome segment substitution line (CSSL) and a near-isogenic line (NIL) producing high spikelet numbers per panicle (CSSL-GN1 and NIL-APO1, respectively) under free-air CO2 enrichment (FACE) conditions and examined the effects of a large sink capacity on grain yield, its components, and growth-related traits under increased atmospheric CO2 concentrations. Under ambient conditions, CSSL-GN1 and NIL-APO1 exhibited a similar grain yield to Koshihikari, as a result of the trade-off between increased spikelet number and reduced grain filling. However, under FACE conditions, CSSL-GN1 and NIL-APO1 had an equal or a higher grain yield than Koshihikari because of the higher number of spikelets and lower reduction in grain filling. Thus, the improvement of source activity by increased atmospheric CO2 concentrations can lead to enhanced grain yield in rice lines that have a large sink capacity. Therefore, introducing alleles that increase sink capacity into conventional varieties represents a strategy that can be used to develop high-yielding varieties under increased atmospheric CO2 concentrations, such as those predicted in the near future.


Assuntos
Dióxido de Carbono/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Estudos de Associação Genética , Oryza/genética , Oryza/metabolismo , Locos de Características Quantitativas , Alelos , Genômica/métodos , Genótipo , Fenótipo
8.
Microbes Environ ; 31(3): 349-56, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27600710

RESUMO

Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions.


Assuntos
Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Metano/metabolismo , Microbiologia do Solo , Agricultura/métodos , Archaea/efeitos dos fármacos , Archaea/efeitos da radiação , Bactérias/efeitos dos fármacos , Bactérias/efeitos da radiação , Biota/efeitos dos fármacos , Biota/efeitos da radiação , Eletroforese em Gel de Gradiente Desnaturante , Nitrogênio/metabolismo , Oryza/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real , Solo/química , Temperatura
9.
Glob Chang Biol ; 22(3): 1256-70, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26463894

RESUMO

Rising air temperatures are projected to reduce rice yield and quality, whereas increasing atmospheric CO2 concentrations ([CO2 ]) can increase grain yield. For irrigated rice, ponded water is an important temperature environment, but few open-field evaluations are available on the combined effects of temperature and [CO2 ], which limits our ability to predict future rice production. We conducted free-air CO2 enrichment and soil and water warming experiments, for three growing seasons to determine the yield and quality response to elevated [CO2 ] (+200 µmol mol(-1) , E-[CO2 ]) and soil and water temperatures (+2 °C, E-T). E-[CO2 ] significantly increased biomass and grain yield by approximately 14% averaged over 3 years, mainly because of increased panicle and spikelet density. E-T significantly increased biomass but had no significant effect on the grain yield. E-T decreased days from transplanting to heading by approximately 1%, but days to the maximum tiller number (MTN) stage were reduced by approximately 8%, which limited the panicle density and therefore sink capacity. On the other hand, E-[CO2 ] increased days to the MTN stage by approximately 4%, leading to a greater number of tillers. Grain appearance quality was decreased by both treatments, but E-[CO2 ] showed a much larger effect than did E-T. The significant decrease in undamaged grains (UDG) by E-[CO2 ] was mainly the result of an increased percentage of white-base grains (WBSG), which were negatively correlated with grain protein content. A significant decrease in grain protein content by E-[CO2 ] accounted in part for the increased WBSG. The dependence of WBSG on grain protein content, however, was different among years; the slope and intercept of the relationship were positively correlated with a heat dose above 26 °C. Year-to-year variation in the response of grain appearance quality demonstrated that E-[CO2 ] and rising air temperatures synergistically reduce grain appearance quality of rice.


Assuntos
Dióxido de Carbono/metabolismo , Temperatura Alta , Oryza/crescimento & desenvolvimento , Água/análise , Tempo (Meteorologia) , Biomassa , Japão , Estações do Ano
10.
Microbes Environ ; 30(1): 51-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25740174

RESUMO

Rice shoot-associated bacterial communities at the panicle initiation stage were characterized and their responses to elevated surface water-soil temperature (ET), low nitrogen (LN), and free-air CO2 enrichment (FACE) were assessed by clone library analyses of the 16S rRNA gene. Principal coordinate analyses combining all sequence data for leaf blade- and leaf sheath-associated bacteria revealed that each bacterial community had a distinct structure, as supported by PC1 (61.5%), that was mainly attributed to the high abundance of Planctomycetes in leaf sheaths. Our results also indicated that the community structures of leaf blade-associated bacteria were more sensitive than those of leaf sheath-associated bacteria to the environmental factors examined. Among these environmental factors, LN strongly affected the community structures of leaf blade-associated bacteria by increasing the relative abundance of Bacilli. The most significant effect of FACE was also observed on leaf blade-associated bacteria under the LN condition, which was explained by decreases and increases in Agrobacterium and Pantoea, respectively. The community structures of leaf blade-associated bacteria under the combination of FACE and ET were more similar to those of the control than to those under ET or FACE. Thus, the combined effects of environmental factors need to be considered in order to realistically assess the effects of environmental changes on microbial community structures.


Assuntos
Bactérias/classificação , Biota/efeitos dos fármacos , Biota/efeitos da radiação , Dióxido de Carbono/análise , Nitrogênio/análise , Oryza/microbiologia , Folhas de Planta/microbiologia , Bactérias/genética , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
11.
Front Microbiol ; 6: 136, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25750640

RESUMO

A number of studies have shown that elevated atmospheric CO2 ([CO2]) affects rice yields and grain quality. However, the responses of root-associated bacteria to [CO2] elevation have not been characterized in a large-scale field study. We conducted a free-air CO2 enrichment (FACE) experiment (ambient + 200 µmol.mol(-1)) using three rice cultivars (Akita 63, Takanari, and Koshihikari) and two experimental lines of Koshihikari [chromosome segment substitution and near-isogenic lines (NILs)] to determine the effects of [CO2] elevation on the community structure of rice root-associated bacteria. Microbial DNA was extracted from rice roots at the panicle formation stage and analyzed by pyrosequencing the bacterial 16S rRNA gene to characterize the members of the bacterial community. Principal coordinate analysis of a weighted UniFrac distance matrix revealed that the community structure was clearly affected by elevated [CO2]. The predominant community members at class level were Alpha-, Beta-, and Gamma-proteobacteria in the control (ambient) and FACE plots. The relative abundance of Methylocystaceae, the major methane-oxidizing bacteria in rice roots, tended to decrease with increasing [CO2] levels. Quantitative PCR revealed a decreased copy number of the methane monooxygenase (pmoA) gene and increased methyl coenzyme M reductase (mcrA) in elevated [CO2]. These results suggest elevated [CO2] suppresses methane oxidation and promotes methanogenesis in rice roots; this process affects the carbon cycle in rice paddy fields.

12.
Rapid Commun Mass Spectrom ; 28(21): 2315-24, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25279745

RESUMO

RATIONALE: The stable carbon isotope ratio ((13)C/(12)C or δ(13)C value) of methane (CH4) produced in methanogenic environments contains information about primary source material, CH4 production pathways, degree of oxidation, and transport. However, the availability of δ(13)C-CH4 data is severely limited because isotope analysis methods are low throughput, owing primarily to the need for manual processing steps. High-throughput, fully automated measurement is necessary to facilitate the use of the δ(13)C signature in understanding CH4 biogeochemistry. METHODS: We modified a conventional continuous-flow (CF) gas chromatography/combustion/isotope ratio mass spectrometry (IRMS) instrument system by incorporating (i) automated sample injection, (ii) a newly developed temperature-control unit for preconcentration and cryofocus traps, and (iii) an automatic system for liquid-nitrogen refilling. The system, which could run unattended for 1 day, was used to obtain δ(13)C-CH4 data for CH4 samples collected from an irrigated rice paddy with an automated closed-chamber system. RESULTS: Using the fully automated CF-IRMS system, we measured δ(13)C-CH4 data for 77 samples during a 21.5-h continuous run (17 min per sample) with high precision (1σ = 0.11‰, reproducibility) and moderate consumption of liquid nitrogen (11 L). Application of the system to CH4 samples obtained from the rice paddy revealed distinct seasonal and diurnal variations in δ(13)C values with the highest temporal resolution ever reported. CONCLUSIONS: A fully automated, high-throughput system for the measurement of δ(13)C-CH4 values was developed and used to analyze air samples obtained from a rice paddy. Our results demonstrate the high potential of this system for obtaining δ(13)C data useful for process-level understanding of CH4 biogeochemistry with respect to spatiotemporal variation of CH4 sources and how that variation is affected by environmental and management factors.

13.
Artigo em Inglês | MEDLINE | ID: mdl-25101143

RESUMO

BACKGROUND: This study aimed to clarify how community mental healthcare systems can be improved. METHODS: We included 79 schizophrenic patients, aged 20 to 80 years, residing in the Tokyo metropolitan area who regularly visited rehabilitation facilities offering assistance to psychiatric patients and were receiving treatment on an outpatient basis. No subjects had severe cognitive disorders or were taking medication with side effects that could prevent the completion of questionnaires. Questionnaires included items related to quality of life, self-efficacy, self-esteem, psychosis based on the Behavior and Symptom Identification Scale, health locus of control, and socio-demographic factors. We performed multiple linear regression analysis with quality of life as the dependent variable and, based on covariance structural analysis, evaluated the goodness of fit of the resulting structural equations models. RESULTS: Self-efficacy, self-esteem, and degree of psychosis significantly impacted quality of life. Marital status, age, and types of medications also influenced quality of life. Multiple linear regression analysis revealed psychiatric symptoms (Behavior and Symptom Identification Scale-32 [daily living and role functioning] (Beta = -0.537, p < 0.001) and self-efficacy (Beta = 0.249, p < 0.05) to be predictors of total quality of life score. Based on covariance structural analysis, the resulting model was found to exhibit reasonable goodness of fit. CONCLUSIONS: Self-efficacy had an especially strong and direct impact on QOL. Therefore, it is important to provide more positive feedback to patients, provide social skills training based on cognitive behavioral therapy, and engage patients in role playing to improve self-efficacy and self-concept.

14.
Microbes Environ ; 29(2): 184-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24882221

RESUMO

The effects of free-air carbon dioxide enrichment (FACE) and elevated soil and water temperature (warming) on the rice root-associated bacterial community were evaluated by clone library analysis of the 16S ribosomal RNA gene. Roots were sampled at the panicle initiation and ripening stages 41 and 92 days after transplanting (DAT), respectively. The relative abundances of the methanotrophs Methylosinus and Methylocystis were increased by warming and decreased by FACE at 92 DAT, which indicated that microbial methane (CH4) oxidation in rice roots may have been influenced by global warming. The relative abundance of Burkholderia kururiensis was increased by warming at 41 DAT and by FACE or warming at 92 DAT. The abundances of methanotrophs increased during rice growth, which was likely induced by an enhancement in the emission of CH4 from the paddy fields, suggesting that CH4 is one of the predominant factors affecting the structure of the microbial community in rice roots. Marked variations in the community structure were also observed during rice growth in other genera: Bradyrhizobium, Clostridium, and an unknown genus close to Epsilonproteobacteria were abundant at 92 DAT, whereas Achromobacter was abundant at 41 DAT. These results demonstrated that the community structures of rice root-associated bacteria were markedly affected by FACE, temperature, and the rice growth stage.


Assuntos
Bactérias/crescimento & desenvolvimento , Dióxido de Carbono/farmacologia , Oryza/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Sequência de Bases , Carbono/metabolismo , DNA Bacteriano/genética , Temperatura Alta , Metano/metabolismo , Nitrogênio/metabolismo , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo
15.
Rice (N Y) ; 7(1): 6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24920972

RESUMO

BACKGROUND: Heat-tolerant rice cultivars have been developed as a countermeasure to poor grain appearance quality under high temperatures. Recent studies showed that elevated CO2 concentrations (E-[CO2]) also reduce grain quality. To determine whether heat-tolerant cultivars also tolerate E-[CO2], we conducted a free-air CO2 enrichment (FACE) experiment with 12 rice cultivars differing in heat tolerance. RESULTS: The percentage of undamaged grains of five standard cultivars (Akitakomachi, Kinuhikari, Koshihikari, Matsuribare, Nipponbare) averaged 61.7% in the ambient [CO2] (AMB) plot and 51.7% in the FACE plot, whereas that of heat-tolerant cultivars (Eminokizuna, Wa2398, Kanto 257, Toyama 80, Mineharuka, Kanto 259, Saikai 290) averaged 73.5% in AMB and 71.3% in FACE. This resulted in a significant [CO2] by cultivar interaction. The percentage of white-base or white-back grains increased from 8.4% in AMB to 17.1% in FACE in the sensitive cultivars, but from only 2.1% in AMB to only 4.4% in FACE in the heat-tolerant cultivars. CONCLUSION: Heat-tolerant cultivars retained their grain appearance quality at E-[CO2] under present air temperatures. Further improvements in appearance quality under present conditions will be needed to achieve improvements under E-[CO2], because E-[CO2] will likely lower the threshold temperature for heat stress.

16.
Plant Cell Physiol ; 55(9): 1582-91, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24951312

RESUMO

The exchange of gaseous NH3 between the atmosphere and plants plays a pivotal role in controlling the global NH3 cycle. Photorespiration generates NH3 through oxygenation instead of carboxylation by the CO2-fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). The future increase in the atmospheric CO2 concentration, [CO2], is expected to reduce plant NH3 production by suppressing RuBisCO oxygenation (Vo). We measured the net leaf NH3 uptake rate (FNH3) across NH3 concentrations in the air (na) ranging from 0.2 to 1.6 nmol mol(-1) at three [CO2] values (190, 360 and 750 µmol mol(-1)) using rice plants. We analyzed leaf NH3 gas exchange using a custom-made whole-leaf chamber system, and determined the NH3 compensation point (γ), a measure of potential NH3 emission, as the x-intercept of the linear relationship of FNH3 as a function of na. Our γ values were lower than those reported for other plant species. γ did not decrease under elevated [CO2], although leaf NH4 (+) content decreased with decreasing Vo at higher [CO2]. This was also the case for γ estimated from the pH and NH4 (+) concentration of the leaf apoplast solution (γ'). γ' of rice plants, grown at elevated [CO2] for months in a free-air CO2 enrichment facility, was also not decreased by elevated [CO2]. These results suggest that suppression of RuBisCO oxygenation by elevated [CO2] does not decrease potential leaf NH3 emission in rice plants.


Assuntos
Amônia/metabolismo , Dióxido de Carbono/farmacologia , Nitrogênio/metabolismo , Oryza/metabolismo , Respiração Celular/efeitos dos fármacos , Luz , Oryza/efeitos dos fármacos , Oryza/efeitos da radiação , Fotossíntese/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Transpiração Vegetal/efeitos dos fármacos
17.
Plant Cell Physiol ; 55(2): 370-80, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24406632

RESUMO

To enable prediction of future rice production in a changing climate, we need to understand the interactive effects of temperature and elevated [CO2] (E[CO2]). We therefore examined if the effect of E[CO2] on the light-saturated leaf photosynthetic rate (Asat) was affected by soil and water temperature (NT, normal; ET, elevated) under open-field conditions at the rice free-air CO2 enrichment (FACE) facility in Shizukuishi, Japan, in 2007 and 2008. Season-long E[CO2] (+200 µmol mol(-1)) increased Asat by 26%, when averaged over two years, temperature regimes and growth stages. The effect of ET (+2°C) on Asat was not significant at active tillering and heading, but became negative and significant at mid-grain filling; Asat in E[CO2]-ET was higher than in ambient [CO2] (A[CO2])-NT by only 4%. Photosynthetic down-regulation at E[CO2] also became apparent at mid-grain filling; Asat compared at the same [CO2] in the leaf cuvette was significantly lower in plants grown in E[CO2] than in those grown in A[CO2]. The additive effects of E[CO2] and ET decreased Asat by 23% compared with that of A[CO2]-NT plants. Although total crop nitrogen (N) uptake was increased by ET, N allocation to the leaves and to Rubisco was reduced under ET and E[CO2] at mid-grain filling, which resulted in a significant decrease (32%) in the maximum rate of ribulose-1,5-bisphosphate carboxylation on a leaf area basis. Because the change in N allocation was associated with the accelerated phenology in E[CO2]-ET plants, we conclude that soil and water warming accelerates photosynthetic down-regulation at E[CO2].


Assuntos
Dióxido de Carbono/farmacologia , Nitrogênio/metabolismo , Oryza/fisiologia , Fotossíntese , Transpiração Vegetal , Ribulose-Bifosfato Carboxilase/metabolismo , Biomassa , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Produtos Agrícolas , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/fisiologia , Grão Comestível/efeitos da radiação , Japão , Luz , Nitrogênio/análise , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oryza/efeitos da radiação , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Ribulosefosfatos/metabolismo , Estações do Ano , Solo , Temperatura , Água/fisiologia
18.
Plant Cell Physiol ; 55(2): 381-91, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24443497

RESUMO

The development of crops which are well suited to growth under future environmental conditions such as higher atmospheric CO2 concentrations ([CO2]) is essential to meeting the challenge of ensuring food security in the face of the growing human population and changing climate. A high-yielding indica rice variety (Oryza sativa L. cv. Takanari) has been recently identified as a potential candidate for such breeding, due to its high productivity in present [CO2]. To test if it could further increase its productivity under elevated [CO2] (eCO2), Takanari was grown in the paddy field under season-long free-air CO2 enrichment (FACE, approximately 200 µmol mol(-1) above ambient [CO2]) and its leaf physiology was compared with the representative japonica variety 'Koshihikari'. Takanari showed consistently higher midday photosynthesis and stomatal conductance than Koshihikari under both ambient and FACE growth conditions over 2 years. Maximum ribulose-1,5-bisphosphate carboxylation and electron transport rates were higher for Takanari at the mid-grain filling stage in both years. Mesophyll conductance was higher in Takanari than in Koshihikari at the late grain-filling stage. In contrast to Koshihikari, Takanari grown under FACE conditions showed no decrease in total leaf nitrogen on an area basis relative to ambient-grown plants. Chl content was higher in Takanari than in Koshihikari at the same leaf nitrogen level. These results indicate that Takanari maintains its superiority over Koshihikari in regards to its leaf-level productivity when grown in elevated [CO2] and it may be a valuable resource for rice breeding programs which seek to increase crop productivity under current and future [CO2].


Assuntos
Dióxido de Carbono/farmacologia , Nitrogênio/metabolismo , Oryza/fisiologia , Fotossíntese , Transpiração Vegetal , Dióxido de Carbono/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/fisiologia , Japão , Células do Mesofilo , Nitrogênio/análise , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia , Ribulose-Bifosfato Carboxilase/metabolismo , Estações do Ano , Especificidade da Espécie
19.
J Exp Bot ; 64(11): 3179-88, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23918962

RESUMO

Rising atmospheric CO2 concentrations will probably increase rice (Oryza sativa L.) yield but decrease grain nitrogen (GN) concentration. Grains attached to different positions in the panicles differ greatly in weight and quality, but their responses to elevated CO2 (e[CO2]) are poorly understood, which limits our understanding of the mechanisms of yield enhancement and quality degradation. Thus a free-air CO2 enrichment experiment was conducted to examine the effects of e[CO2] on grain mass (GM), grain carbon (GC), and GN accumulation in the spikelets attached to the upper primary rachis branch (superior spikelets; SS) and those attached to the lower secondary rachis (inferior spikelets; IS). e[CO2] stimulated the rice yield by 13% but decreased the N concentration in the panicle by 7% when averaged over two levels of N fertilizations (P < 0.01). The responses of SS and IS to e[CO2] were different particularly under higher N supply. For SS, e[CO2] decreased GN by 24% (P < 0.01) but did not affect GM. For IS, e[CO2] increased GM by 13% (P < 0.05) but GN was not affected. The reduction of GN due to e[CO2] started to appear at the beginning of grain filling. These results suggest that future [CO2] levels probably stimulate the grain growth of IS, most of which are not marketable due to limited size, at the expense of GN reduction in SS. Translocation of N from SS to IS may be a possible mechanism for reduction in GN of SS. This may degrade the grain quality of marketable rice under e[CO2].


Assuntos
Dióxido de Carbono/farmacologia , Carbono/metabolismo , Nitrogênio/metabolismo , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/efeitos dos fármacos
20.
Glob Chang Biol ; 19(8): 2444-53, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23564676

RESUMO

An elevated atmospheric CO2 concentration ([CO2 ]) can reduce stomatal conductance of leaves for most plant species, including rice (Oryza sativa L.). However, few studies have quantified seasonal changes in the effects of elevated [CO2 ] on canopy evapotranspiration, which integrates the response of stomatal conductance of individual leaves with other responses, such as leaf area expansion, changes in leaf surface temperature, and changes in developmental stages, in field conditions. We conducted a field experiment to measure seasonal changes in stomatal conductance of the uppermost leaves and in the evapotranspiration, transpiration, and evaporation rates using a lysimeter method. The study was conducted for flooded rice under open-air CO2 elevation. Stomatal conductance decreased by 27% under elevated [CO2 ], averaged throughout the growing season, and evapotranspiration decreased by an average of 5% during the same period. The decrease in daily evapotranspiration caused by elevated [CO2 ] was more significantly correlated with air temperature and leaf area index (LAI) rather than with other parameters of solar radiation, days after transplanting, vapor-pressure deficit and FAO reference evapotranspiration. This indicates that higher air temperatures, within the range from 16 to 27 °C, and a larger LAI, within the range from 0 to 4 m(2)  m(-2) , can increase the magnitude of the decrease in evapotranspiration rate caused by elevated [CO2 ]. The crop coefficient (i.e. the evapotranspiration rate divided by the FAO reference evapotranspiration rate) was 1.24 at ambient [CO2 ] and 1.17 at elevated [CO2 ]. This study provides the first direct measurement of the effects of elevated [CO2 ] on rice canopy evapotranspiration under open-air conditions using the lysimeter method, and the results will improve future predictions of water use in rice fields.


Assuntos
Dióxido de Carbono/metabolismo , Oryza/fisiologia , Transpiração Vegetal , Água/metabolismo , Mudança Climática , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA