Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(8): e0287657, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37535625

RESUMO

Nonalcoholic steatohepatitis (NASH) can progress to cirrhosis and even hepatocellular carcinoma (HCC). The incidence of NASH-associated HCC is increasing, posing a serious public health threat. Unfortunately, the underlying pathological mechanisms, including the possible differences between neoplastic and non-neoplastic lesions, remain largely unknown. Previously, we reported a dietary mouse NASH model with a choline-deficient, methionine-lowered, L-amino-acid-defined, high-fat diet containing shortening without trans fatty acids (CDAA-HF-T[-]), which rapidly induces fibrosis and proliferative lesions in the liver. This study aimed to develop a mouse CDAA-HF-T(-) model capable of assessing NASH-associated hepatocarcinogenesis and identifying key signaling factors involved in its underlying mechanisms. Multiple large masses, histopathologically hepatocellular adenomas and carcinomas, and hemangiosarcomas were detected in the liver samples of mice fed CDAA-HF-T(-) for 52 or 63 weeks, along with highly advanced fibrosis and numerous foamy, phagocytic macrophages in the adjacent nontumoral area. Multiple metastatic nodules were found in the lungs of one of the animals, and lymphoid clusters were found in all CDAA-HF-T(-) group mice. In the Ingenuity Pathways Analysis of RNA expression data, the CDAA-HF-T(-) feeding revealed common signal changes in nontumoral and tumoral liver tissues, including increased IL-8 and RhoGTPases signaling and decreased lipid metabolism. Meanwhile, macrophage inflammatory protein 2 (MIP-2) expression levels were upregulated in nontumoral liver tissue from the end of Week 13 of CDAA-HF-T(-) feeding to the end of Week 63. On the other hand, MIP-2 was expressed on macrophages in non-tumor areas and hepatocytes in tumor areas. Therefore, the CDAA-HF-T(-) mouse model is useful for assessing NASH and NASH-associated hepatocarcinogenesis, and IL-8 signaling plays important roles in NASH-associated carcinogenesis and cirrhosis, but it may also play different roles in nontumoral liver tissue and tumorigenesis.


Assuntos
Carcinoma Hepatocelular , Deficiência de Colina , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Interleucina-8/metabolismo , Deficiência de Colina/metabolismo , Fígado/metabolismo , Cirrose Hepática/patologia , Aminoácidos/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Fibrose , Transformação Celular Neoplásica/patologia , Metionina/metabolismo , Colina/metabolismo , Camundongos Endogâmicos C57BL
2.
FEBS Open Bio ; 11(11): 2950-2965, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34390210

RESUMO

Nonalcoholic steatohepatitis (NASH) is often associated with obesity, but some patients develop NASH without obesity. The physiological processes by which nonobese patients develop NASH and cirrhosis have not yet been determined. Here, we analyzed the effects of dietary methionine content on NASH induced in mice fed on a choline-deficient, methionine-lowered, l-amino acid-defined high-fat diet (CDAHFD). CDAHFD with insufficient methionine induced insulin sensitivity and enhanced NASH pathology, but without obesity. In contrast, CDAHFD with sufficient methionine induced steatosis, and unlike CDAHFD with insufficient methionine, also induced obesity and insulin resistance. Gene profile analysis revealed that the disease severity in CDAHFD may partially be due to upregulation of the Rho family GTPases pathway and mitochondrial and nuclear receptor signal dysfunction. The signaling factors/pathways detected in this study may assist in future study of NASH regulation, especially its 'nonobese' subtype.


Assuntos
Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais/fisiologia , Aminoácidos , Animais , Colina/metabolismo , Deficiência de Colina/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Metabolismo dos Lipídeos , Fígado/metabolismo , Cirrose Hepática/metabolismo , Masculino , Metionina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Toxicol Pathol ; 48(6): 756-765, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32833602

RESUMO

Glutathione S-transferase placental form-positive (GST-P+) foci are markers of preneoplastic lesions in rat hepatocarcinogenesis. Our previous studies using reporter gene transgenic rats showed that furan, a hepatocarcinogen in rodents, rapidly induces the formation of GST-P+ foci after short exposure without reporter gene mutation. We hypothesized that GST-P+ foci induced by furan may have biological characteristics different from those induced by diethylnitrosamine (DEN), a genotoxic hepatocarcinogen. Accordingly, we compared the cell kinetics of GST-P+ foci after cessation of DEN treatment and performed comprehensive gene expression in DEN- or furan-induced GST-P+ foci. The number and area of DEN-induced GST-P+ foci were increased after cessation of treatment, whereas furan decreased these parameters. Size distribution analysis showed that large furan-induced GST-P+ foci disappeared after cessation of treatment. Hierarchical cluster analysis showed that all samples from GST-P+ foci induced by furan were separated from those induced by DEN. SOX9 expression was upregulated in furan-induced GST-P+ foci and was detected by immunohistochemistry in large furan-induced GST-P+ foci. Our results indicated that large furan-induced GST-P+ foci were quite different from DEN-induced GST-P+ foci at the molecular and cellular levels. And one of the properties of disappearing large GST-P+ foci were characterized by inclusion of hepatocytes expressing SOX9.


Assuntos
Neoplasias Hepáticas Experimentais , Lesões Pré-Cancerosas , Animais , Dietilnitrosamina , Feminino , Furanos/toxicidade , Expressão Gênica , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Cinética , Fígado/metabolismo , Placenta/metabolismo , Gravidez , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA