Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(12): 108390, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38077129

RESUMO

Does the circadian clock keep running under such hypothermic states as daily torpor and hibernation? This fundamental question has been a research subject for decades but has remained unsettled. We addressed this subject by monitoring the circadian rhythm of clock gene transcription and intracellular Ca2+ in the neurons of the suprachiasmatic nucleus (SCN), master circadian clock, in vitro under a cold environment. We discovered that the transcriptional and Ca2+ rhythms are maintained at 22°C-28°C, but suspended at 15°C, accompanied by a large Ca2+ increase. Rewarming instantly resets the Ca2+ rhythms, while transcriptional rhythms reach a stable phase after the transient state and recover their phase relationship with the Ca2+ rhythm. We conclude that SCN neurons remain functional under moderate hypothermia but stop ticking in deep hypothermia and that the rhythms reset after rewarming. These data also indicate that stable Ca2+ oscillation precedes clock gene transcriptional rhythms in SCN neurons.

2.
Sci Adv ; 7(18)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33931447

RESUMO

Circadian rhythms are based on biochemical oscillations generated by clock genes/proteins, which independently evolved in animals, fungi, plants, and cyanobacteria. Temperature compensation of the oscillation speed is a common feature of the circadian clocks, but the evolutionary-conserved mechanism has been unclear. Here, we show that Na+/Ca2+ exchanger (NCX) mediates cold-responsive Ca2+ signaling important for the temperature-compensated oscillation in mammalian cells. In response to temperature decrease, NCX elevates intracellular Ca2+, which activates Ca2+/calmodulin-dependent protein kinase II and accelerates transcriptional oscillations of clock genes. The cold-responsive Ca2+ signaling is conserved among mice, Drosophila, and Arabidopsis The mammalian cellular rhythms and Drosophila behavioral rhythms were severely attenuated by NCX inhibition, indicating essential roles of NCX in both temperature compensation and autonomous oscillation. NCX also contributes to the temperature-compensated transcriptional rhythms in cyanobacterial clock. Our results suggest that NCX-mediated Ca2+ signaling is a common mechanism underlying temperature-compensated circadian rhythms both in eukaryotes and prokaryotes.

3.
Mol Cell Endocrinol ; 527: 111240, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33676985

RESUMO

Chronic hyperglycemia causes pancreatic ß-cell dysfunction, impaired insulin secretion and the suppression of insulin gene expression. This phenomenon is referred to as glucotoxicity, and is a critical component of the pathogenesis of type 2 diabetes. We previously reported that the expression of candidate plasticity gene 16 (CPG16) was higher in rat pancreatic INS-1 ß-cells under glucotoxic conditions and CPG16 suppressed insulin promoter activity. However, the molecular mechanisms of the CPG16-mediated suppression of insulin gene expression are unclear. In this study, we found that CPG16 directly bound and phosphorylated jun dimerization protein 2 (JDP2), an AP-1 family transcription factor. CPG16 co-localized with JDP2 in the nucleus of INS-1 cells. JDP2 bound to the G1 element of the insulin promoter and up-regulated promoter activity. Finally, CPG16 suppressed the up-regulation of insulin promoter activity by JDP2 in a kinase activity-dependent manner. These results suggest that CPG16 suppresses insulin promoter activity by phosphorylating JDP2.


Assuntos
Regulação da Expressão Gênica , Células Secretoras de Insulina/metabolismo , Insulina/biossíntese , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Elementos de Resposta , Animais , Linhagem Celular , Quinases Semelhantes a Duplacortina , Feminino , Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Ratos Wistar , Proteínas Repressoras/genética
4.
Biochem Biophys Res Commun ; 512(2): 189-195, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30879761

RESUMO

Chronic hyperglycemia causes pancreatic ß-cell dysfunction, impaired insulin secretion and suppression of insulin gene expression, referred to as glucotoxicity. Insulin gene expression is regulated by several protein kinases and protein phosphatases. However, the molecular mechanisms of the suppressed insulin gene expression in glucotoxicity are not fully understood. In this study, we employed rat insulinoma INS-1 cells as a model of pancreatic glucotoxicity. In INS-1 cells, insulin gene expression is up-regulated by incubation with 11.2 mM glucose for 7 days and down-regulated by incubation with 22.4 mM glucose for the same period. To identify the protein kinases and protein phosphatases involved in the suppression of insulin gene expression, we analyzed gene expression in INS-1 cells cultured with 11.2 mM or 22.4 mM glucose for 7 days using microarray analysis and real-time PCR. The expression levels of nine protein kinases were affected by glucotoxic conditions. In particular, CPG16 expression level was increased in INS-1 cells under these conditions. Transfection of CPG16 decreased insulin promoter activity, whereas kinase-dead mutant of CPG16 did not affect this. These results suggest that CPG16 plays a role in the suppression of insulin gene expression in pancreatic ß-cells under glucotoxic conditions.


Assuntos
Regulação para Baixo , Hiperglicemia/genética , Insulina/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Linhagem Celular Tumoral , Quinases Semelhantes a Duplacortina , Hiperglicemia/complicações , Células Secretoras de Insulina/metabolismo , Insulinoma/complicações , Insulinoma/genética , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/genética , Ratos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA