Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Zoolog Sci ; 41(2): 201-209, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38587915

RESUMO

Dispersal increases the costs of feeding and predation risk in the new environment and is reported to be biased toward habitats similar to the natal region in some mammals. The benefits and costs of dispersal often differ between sexes, and most mammals show male-biased dispersal in relation to a polygamous mating system. Japanese serow is generally a solitary and monogamous species. However, recent studies have shown that the sociality of serows on Mt. Asama differs between habitat types. In the mountain forests with low forage availability, solitary habits and social monogamy were observed, while, in alpine grasslands, female grouping and social polygyny were observed, which is probably due to abundant forage availability. We investigated the effects of habitat characteristics and sociality on the dispersal of serows using fecal and tissue samples from two different habitats on Mt. Asama. The Fst value between the two areas was significantly positive, and the mean relatedness within areas was significantly higher than that between areas, which suggests limited gene flow and natal habitat-biased dispersal. Bayesian clustering analysis showed unidirectional gene flow from forest to grassland, which was probably due to the high forage availability of the grassland. Analyses of the assignment index and mean relatedness did not show male-biased dispersal, even in the grassland, where serows were polygynous. Thus, polygyny in the grassland is not linked to male-biased dispersal. In summary, our study suggests that dispersal patterns in Japanese serows are affected by habitat rather than social differences.


Assuntos
Ecossistema , Mamíferos , Feminino , Masculino , Animais , Teorema de Bayes , Japão
2.
Biochem Biophys Res Commun ; 548: 98-103, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33640611

RESUMO

E1A is an adenoviral protein which is expressed at the early phase after viral infection and contains four conserved regions (CR1, CR2, CR3 and CR4). Our previous work suggests that E1A facilitates the formation of cyclin A-CDK2 complex and thereby enhances CDK2 activity. However, the molecular function of E1A in CDK2 activation has been unclear. Here, we studied the mechanism of enhancement of CDK2 activity by E1A, using the E1A variant forms which selectively contain CR domains. We isolated four E1A variant forms, i.e. 13S (containing CR1, CR2, CR3, CR4), 12S (CR1, CR2, CR4), 10S (CR2, CR4) and 9S (CR4), derived from HEK293 cells which express E1A. 13S promoted G2/M-phase arrest, upon CDK2 hyper-activation by co-expressing a stabilized cyclin A mutant, most strongly among those E1A variant forms. Concomitantly, the specific activity of the 13S-associated CDK2 was highest among them. 10S exhibited lower affinity for CDK2 than the 13S while the affinity for CDK2 was comparable between 13S and 12S. Nonetheless, 12S did not enhance the CDK2 specific activity. On the other hand, a mutation in CR2 domain, which is essential for binding to p107, suppressed both the binding and activation of CDK2. These results suggest that CR1 domain, in addition to CR2 domain via p107 interaction, is important for binding to CycA-CDK2 complex while CR3 domain facilitates CDK2 activation. Since the function of CR3 in cell cycle regulation has been relatively unknown, we propose the enhancement of CDK2 activity as a novel function of CR3 domain.


Assuntos
Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Ciclo Celular , Ativação Enzimática , Células HEK293 , Humanos , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA