Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 73: 103186, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38744193

RESUMO

Recent studies have highlighted the indispensable role of oxidized lipids in inflammatory responses, cell death, and disease pathogenesis. Consequently, inhibitors targeting oxidized lipids, particularly lipid-derived radicals critical in lipid peroxidation, which are known as radical-trapping antioxidants (RTAs), have been actively pursued. We focused our investigation on nitroxide compounds that have rapid second-order reaction rate constants for reaction with lipid-derived radicals. A novel screening system was developed by employing competitive reactions between library compounds and a newly developed profluorescence nitroxide probe with lipid-derived radicals to identify RTA compounds. A PubMed search of the top hit compounds revealed their wide application as repositioned drugs. Notably, the inhibitory efficacy of methyldopa, selected from these compounds, against retinal damage and bilateral common carotid artery stenosis was confirmed in animal models. These findings underscore the efficacy of our screening system and suggest that it is an effective approach for the discovery of RTA compounds.

2.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674002

RESUMO

2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO•), a persistent nitronyl nitroxide radical, has been used for the detection and trapping of nitric oxide, as a redox mediator for batteries, for the activity estimation of antioxidants, and so on. However, there is no report on the reactivity of PTIO• in the presence of redox-inactive metal ions. In this study, it is demonstrated that the addition of scandium triflate, Sc(OTf)3 (OTf = OSO2CF3), to an acetonitrile (MeCN) solution of PTIO• resulted in an electron-transfer disproportionation to generate the corresponding cation (PTIO+) and anion (PTIO-), the latter of which is suggested to be stabilized by Sc3+ to form [(PTIO)Sc]2+. The decay of the absorption band at 361 nm due to PTIO•, monitored using a stopped-flow technique, obeyed second-order kinetics. The second-order rate constant for the disproportionation, thus determined, increased with increasing the Sc(OTf)3 concentration to reach a constant value. A drastic change in the cyclic voltammogram recorded for PTIO• in deaerated MeCN containing 0.10 M Bu4NClO4 was also observed upon addition of Sc(OTf)3, suggesting that the large positive shift of the one-electron reduction potential of PTIO• (equivalent to the one-electron oxidation potential of PTIO-) in the presence of Sc(OTf)3 may result in the disproportionation. When H2O was added to the PTIO•-Sc(OTf)3 system in deaerated MeCN, PTIO• was completely regenerated. It is suggested that the complex formation of Sc3+ with H2O may weaken the interaction between PTIO- and Sc3+, leading to electron-transfer comproportionation to regenerate PTIO•. The reversible disproportionation of PTIO• was also confirmed by electron paramagnetic resonance (EPR) spectroscopy.


Assuntos
Acetonitrilas , Óxidos N-Cíclicos , Escândio , Água , Acetonitrilas/química , Água/química , Óxidos N-Cíclicos/química , Escândio/química , Transporte de Elétrons , Oxirredução , Cinética , Íons/química , Imidazóis/química
3.
ACS Med Chem Lett ; 15(2): 310-313, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38352823

RESUMO

Cancer cell migration is related to malignancy and patient prognosis. We previously reported that intracellular reactive oxygen species (ROS) promoted cancer cellular migration and invasion and that an antioxidant enzyme could help to attenuate the malignancy. Catechin is known as an antioxidant, and we have developed a catechin analog, planar catechin, which showed an antioxidant activity significantly stronger than that of the parent (+)-catechin. In this study, we examined the effects of the planar catechin on the migration of gastric normal and cancer cells. A scratched assay showed that the planar catechin suppressed the cellular migration rates in both normal and cancer cells, while the prevention levels in cancer cells were remarkable compared to the normal cells. These results suggest that the planar catechin with the enhanced antioxidant activity effectively scavenged the ROS overexpressed in the cancer cells and inhibited cancer cellular activities, including migration.

4.
Biomolecules ; 14(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275757

RESUMO

Questions about which reactive oxygen species (ROS) or reactive nitrogen species (RNS) can escape from the mitochondria and activate signals must be addressed. In this study, two parameters, the calculated dipole moment (debye, D) and permeability coefficient (Pm) (cm s-1), are listed for hydrogen peroxide (H2O2), hydroxyl radical (•OH), superoxide (O2•-), hydroperoxyl radical (HO2•), nitric oxide (•NO), nitrogen dioxide (•NO2), peroxynitrite (ONOO-), and peroxynitrous acid (ONOOH) in comparison to those for water (H2O). O2•- is generated from the mitochondrial electron transport chain (ETC), and several other ROS and RNS can be generated subsequently. The candidates which pass through the mitochondrial membrane include ROS with a small number of dipoles, i.e., H2O2, HO2•, ONOOH, •OH, and •NO. The results show that the dipole moment of •NO2 is 0.35 D, indicating permeability; however, •NO2 can be eliminated quickly. The dipole moments of •OH (1.67 D) and ONOOH (1.77 D) indicate that they might be permeable. This study also suggests that the mitochondria play a central role in protecting against further oxidative stress in cells. The amounts, the long half-life, the diffusion distance, the Pm, the one-electron reduction potential, the pKa, and the rate constants for the reaction with ascorbate and glutathione are listed for various ROS/RNS, •OH, singlet oxygen (1O2), H2O2, O2•-, HO2•, •NO, •NO2, ONOO-, and ONOOH, and compared with those for H2O and oxygen (O2). Molecules with negative electrical charges cannot directly diffuse through the phospholipid bilayer of the mitochondrial membranes. Short-lived molecules, such as •OH, would be difficult to contribute to intracellular signaling. Finally, HO2• and ONOOH were selected as candidates for the ROS/RNS that pass through the mitochondrial membrane.


Assuntos
Peróxido de Hidrogênio , Dióxido de Nitrogênio , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio/farmacologia , Citosol , Estresse Oxidativo , Óxido Nítrico , Ácido Peroxinitroso , Oxigênio , Mitocôndrias
5.
Radiat Res ; 201(2): 115-125, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211765

RESUMO

The effects of long-term low-dose X-ray irradiation on the outer root sheath (ORS) cells of C3H/He mice were investigated. Mice were irradiated with a regime of 100 mGy/day, 5 days/week, for 12 weeks (Group X) and the results obtained were compared to those in a non-irradiated control (Group C). Potential protection against ORS cells damage induced by this exposure was investigated by adding the stable nitroxide radical 4-hydroxyl-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) at 1 mM to the drinking water of mice (Group X + TEMPOL). The results obtained were compared with Group C and a non-irradiated group treated with TEMPOL (Group C + TEMPOL). After fractionated X-ray irradiation, skin was removed and ORS cells were examined by hematoxylin and eosin staining and electron microscopy for an abnormal nuclear morphology and nuclear condensation changes. Fractionated X-irradiated mice had an increased number of ORS cells with an abnormal nuclear morphology as well as nuclear condensation changes. Sections were also immunohistochemically examined for the presence of TdT-mediated dUTP nick-end labeling (TUNEL), 8-hydroxy-2'-deoxyguanosine (8-OHdG), 4-hydroxynonenal (4-HNE), vascular endothelial growth factor (VEGF), nitrotyrosine, heme oxygenase 1 (HO-1), and protein gene product 9.5 (PGP 9.5). Significant increases were observed in TUNEL, 8-OHdG, and 4-HNE levels in ORS cells from mice in Group X. Electron microscopy also showed irregular shrunken ORS cells in Group X. These changes were prevented by the presence of TEMPOL in the drinking water of the irradiated mice. TEMPOL alone had no significant effects. These results suggest that fractionated doses of radiation induced oxidative damage in ORS cells; however, TEMPOL provided protection against this damage, possibly as a result of the rapid reaction of this nitroxide radical with the reactive oxidants generated by fractionated X-ray irradiation.


Assuntos
Água Potável , Óxidos de Nitrogênio , Marcadores de Spin , Animais , Camundongos , Raios X , Folículo Piloso , Fator A de Crescimento do Endotélio Vascular , Camundongos Endogâmicos C3H , Óxidos N-Cíclicos/farmacologia , Óxidos N-Cíclicos/uso terapêutico
6.
Pharmaceutics ; 15(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-38004516

RESUMO

Radiotherapy, in which X-rays are commonly used, is one of the most effective procedures for treating cancer. However, some cancer cells become resistant to radiation therapy, leading to poor prognosis. Therefore, a new therapeutic method is required to prevent cancer cells from acquiring radiation resistance. Photodynamic therapy (PDT) is a cancer treatment that uses photosensitizers, such as porphyrin compounds, and low-powered laser irradiation. We previously reported that reactive oxygen species (ROS) derived from mitochondria induce the expression of a porphyrin transporter (HCP1) and that laser irradiation enhances the cytotoxic effect. In addition, X-ray irradiation induces the production of mitochondrial ROS. Therefore, radioresistant cancer cells established with continuous X-ray irradiation would also overexpress ROS, and photodynamic therapy could be an effective therapeutic method. In this study, we established radioresistant cancer cells and examined the therapeutic effects and mechanisms with photodynamic therapy. We confirmed that X-ray-resistant cells showed overgeneration of mitochondrial ROS and elevated expression of HCP1, which led to the active accumulation of porphyrin and an increase in cytotoxicity with laser irradiation. Thus, photodynamic therapy is a promising treatment for X-ray-resistant cancers.

7.
ACS Med Chem Lett ; 14(10): 1478-1481, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37849552

RESUMO

Catechin is one of the best-known antioxidants and is reported to have some favorable physiological activities, including anti-cancer effects. We previously synthesized a catechin analog, planar catechin, which showed a 10-fold larger radical scavenging activity than (+)-catechin. However, the physiological effects of the planar catechin have remained unclear. In this study, we examined cytotoxicity and mitochondrial membrane potential after planar catechin treatment using a rat normal gastric mucosal cell line, RGM1, and its chemically induced cancer-like cell line, RGK1. Interestingly, the planar catechin showed remarkable cytotoxicity compared to (+)-catechin, with cancer cell specificity. Furthermore, the decrease in the mitochondrial membrane potential of cancer cells was observed at specific concentrations of the planar catechin. These results indicate that the planar catechin, possessing higher antioxidant activity, induces its anti-cancer effect through a decrease in the mitochondrial membrane potential and thus can be a promising agent for cancer treatment.

8.
Molecules ; 28(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37446663

RESUMO

A neutral, stable radical, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•), has been frequently used to estimate the activity of antioxidants for more than 60 years. However, the number of reports about the effect of metal ions on the reactivity of DPPH• is quite limited. We have recently reported a unique electron-transfer disproportionation of DPPH• to produce the DPPH cations (DPPH+) and anions (DPPH-) upon the addition of scandium triflate [Sc(OTf)3 (OTf = OSO2CF3)] to an acetonitrile (MeCN) solution of DPPH•. The driving force of this reaction is suggested to be an interaction between DPPH- and Sc3+. In this study, it is demonstrated that the addition of H2O to the DPPH•-Sc(OTf)3 system in MeCN resulted in an increase in the absorption band at 519 nm due to DPPH•. This indicated that an electron-transfer comproportionation occurred to regenerate DPPH•. The regeneration of DPPH• was also confirmed by electron paramagnetic resonance (EPR) spectroscopy. The amount of DPPH• increased with an increasing amount of added H2O to reach a constant value. The detailed mechanism of regeneration of DPPH• was proposed based on the detailed spectroscopic and kinetic analyses, in which the reaction of DPPH+ with [(DPPH)2Sc(H2O)3]+ generated upon the addition of H2O to [(DPPH)2Sc]+ is the rate-determining step.


Assuntos
Elétrons , Escândio , Escândio/química , Transporte de Elétrons , Íons/química
9.
J Clin Biochem Nutr ; 72(2): 107-116, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36936873

RESUMO

The impact of radiation-induced hydrogen peroxide (H2O2) on the biological effects of X-rays and carbon-ion beams was investigated using a selenium-deficient (SeD) mouse model. Selenium is the active center of glutathione peroxidase (GSH-Px), and SeD mice lack the ability to degrade H2O2. Male and female SeD mice were prepared by feeding a torula yeast-based SeD diet and ultrapure water. Thirty-day survival rates after whole-body irradiation, radiation-induced leg contracture, and MRI-based redox imaging of the brain were assessed and compared between SeD and normal mice. Thirty-day lethality after whole-body 5.6 Gy irradiation with X-rays or carbon-ion beams was higher in the SeD mice than in the normal mice, while SeD did not give the notable difference between X-rays and carbon-ion beams. SeD also did not affect the maximum leg contracture level after irradiation with carbon-ion beams, but delayed the leg contraction rate. In addition, no marked effects of SeD were observed on variations in the redox status of the brain after irradiation. Collectively, the present results indicate that SeD slightly altered the biological effects of X-rays and/or carbon-ion beams. GSH-Px processes endogenous H2O2 generated through mitochondrial respiration, but does not have the capacity to degrade H2O2 produced by irradiation.

10.
Biomolecules ; 13(3)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36979380

RESUMO

It has been known that reactive oxygen species (ROS) are generated from the mitochondrial electron transport chain (ETC). Majima et al. proved that mitochondrial ROS (mtROS) caused apoptosis for the first time in 1998 (Majima et al. J Biol Chem, 1998). It is speculated that mtROS can move out of the mitochondria and initiate cellular signals in the nucleus. This paper aims to prove this phenomenon by assessing the change in the amount of manganese superoxide dismutase (MnSOD) by MnSOD transfection. Two cell lines of the same genetic background, of which generation of mtROS are different, i.e., the mtROS are more produced in RGK1, than in that of RGM1, were compared to analyze the cellular signals. The results of immunocytochemistry staining showed increase of Nrf2, Keap1, HO-1 and 2, MnSOD, GCL, GST, NQO1, GATA1, GATA3, GATA4, and GATA5 in RGK1 compared to those in RGM1. Transfection of human MnSOD in RGK1 cells showed a decrease of those signal proteins, suggesting mtROS play a role in cellular signals in nucleus.


Assuntos
Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Apoptose
11.
Antioxidants (Basel) ; 12(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36829782

RESUMO

In diseases related to oxidative stress, accumulation of metal ions at the site of pathogenesis results in the generation of reactive oxygen species (ROS) through the reductive activation of oxygen molecules catalyzed by the metal ions. If these metals can be removed and the generated ROS can be strongly scavenged, such diseases can be prevented and treated. Planar catechins exhibit stronger radical scavenging activity than natural catechins and can efficiently scavenge hydroxyl radicals generated by the Fenton reaction without showing pro-oxidant effects, even in the presence of iron ions. Hence, in the current study, we designed a compound in which diethylenetriaminepentaacetic acid (DTPA), a metal chelator, was bound to a planar catechin with enhanced radical scavenging activity by immobilizing the steric structure of a natural catechin to be planar. This compound showed almost no radical scavenging activity due to intramolecular hydrogen bonding of DTPA with the planar catechins; however, when coordinated with Fe3+, it showed more potent radical scavenging activity than planar catechins. Owing to its potent antioxidant activity triggered by metal coordination and its inhibition of ROS generation by trapping metal ions, this compound might exert excellent preventive and therapeutic effects against oxidative stress-related diseases.

12.
Cancers (Basel) ; 14(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35892902

RESUMO

The impact of the site of the Fenton reaction, i.e., hydroxyl radical (•OH) generation, on cytotoxicity was investigated by estimating cell lethality in rat thymocytes. Cells were incubated with ferrous sulfate (FeSO4) and hydrogen peroxide (H2O2), or pre-incubated with FeSO4 and then H2O2 was added after medium was replaced to remove iron ions or after the medium was not replaced. Cell lethality in rat thymocytes was estimated by measuring cell sizes using flow cytometry. High extracellular concentrations of FeSO4 exerted protective effects against H2O2-induced cell death instead of enhancing cell lethality. The pre-incubation of cells with FeSO4 enhanced cell lethality induced by H2O2, whereas a pre-incubation with a high concentration of FeSO4 exerted protective effects. FeSO4 distributed extracellularly or on the surface of cells neutralized H2O2 outside cells. Cytotoxicity was only enhanced when the Fenton reaction, i.e., the generation of •OH, occurred inside cells. An assessment of plasmid DNA breakage showed that •OH induced by the Fenton reaction system did not break DNA. Therefore, the main target of intracellularly generated •OH does not appear to be DNA.

13.
J Clin Biochem Nutr ; 70(3): 213-221, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35692674

RESUMO

The quantitative measurement of free radicals in liquid using an X-band electron paramagnetic resonance (EPR) was systematized. Quantification of free radicals by EPR requires a standard sample that contains a known spin amount/concentration. When satisfactory reproducibility of the sample material, volume, shape, and positioning in the cavity for EPR measurements can be guaranteed, a sample tested and a standard can be directly compared and the process of quantification can be simplified. The purpose of this study was to simplify manual quantitative EPR measurement. A suitable sample volume for achieving a stable EPR intensity was estimated. The effects of different solvents on the EPR sensitivity were compared. The stability and reproducibility of the EPR intensity of standard nitroxyl radical solutions were compared among different types of sample tubes. When the sample tubes, sample volumes, and/or solvents were the same, the EPR intensity was reproduced with an error of 2% or less for µM samples. The quantified sample and the standard sample in the same solvent and the same volume drawn into the same sample tube was able to be directly compared. The standard sample for quantification should be measured just before or after every daily experiment.

14.
Arch Biochem Biophys ; 726: 109191, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35318035

RESUMO

This commentary describes a highly cited paper by Eli Finkelstein, Gerald M. Rosen, and Elmer J. Raukman that appeared in Archives of Biochemistry and Biophysics published in 1980. They reviewed many reports being regularly appearing in the literature describing spin trapping and hydroxyl radicals from various sources and contributed to the development and progress that has been made in oxidative stress research.


Assuntos
Radical Hidroxila , Superóxidos , Óxidos N-Cíclicos , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres , Marcadores de Spin , Detecção de Spin
15.
Arch Biochem Biophys ; 720: 109153, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35247362

RESUMO

This commentary describes a highly cited paper by Eli Finkelstein, Gerald M. Rosen, and Elmer J. Raukman that appeared in Archives of Biochemistry and Biophysics published in 1980. They reviewed many reports being regularly appearing in the literature describing spin trapping and hydroxyl radicals from various sources and contributed to the development and progress that has been made in oxidative stress research.

16.
Antioxidants (Basel) ; 11(2)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35204222

RESUMO

Pterostilbene (PTS), a methylated analog of resveratrol (RSV), has recently attracted much attention due to its enhanced bioavailability compared to RSV. However, little is known about the radical-scavenging mechanism of PTS. In this study, we investigated the effect of Mg(ClO4)2 on the scavenging reaction of galvinoxyl radical (GO•) by PTS in acetonitrile (MeCN). GO• was used as a model for reactive oxygen radicals. The second-order rate constant (kH) for the GO•-scavenging reaction by PTS was more than threefold larger than that by RSV, although thermodynamic parameters, such as the relative O-H bond dissociation energies of the phenolic OH groups, ionization potentials, and HOMO energies calculated by the density functional theory are about the same between PTS and RSV. The oxidation peak potential of PTS determined by the cyclic voltammetry in MeCN (0.10 M Bu4NClO4) was also virtually the same as that of RSV. On the other hand, no effect of Mg (ClO4)2 on the kH values was observed for PTS, in contrast to the case for RSV. A kinetic isotope effect of 3.4 was observed when PTS was replaced by a deuterated PTS. These results suggest that a one-step hydrogen-atom transfer from PTS to GO• may be the rate-determining step in MeCN.

17.
Molecules ; 27(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35163857

RESUMO

The linear-density (number of molecules on an arbitrary distance) of X-ray-induced markedly dense hydroxyl radicals (•OH) in water was estimated based on EPR spin-trapping measurement. A lower (0.13 mM-2.3 M) concentration series of DMPO water solutions and higher (1.7-6.0 M) concentration series of DMPO water solutions plus neat DMPO liquid (8.8 M as DMPO) were irradiated with 32 Gy of X-rays. Then, the yield of DMPO-OH in DMPO water solutions and the total spin-adduct of DMPO in neat DMPO were quantified. For the higher concentration DMPO series, the EPR peak area was estimated by double integration, and the baseline correction of the integral spectrum is necessary for accurate estimation of the peak area. The preparation of a suitable standard sample corresponding to the electric permittivity according to DMPO concentration was quite important for quantification of DMPO-OH, especially in DMPO concentration beyond 2 M. The linear-density of •OH generation in water by X-ray irradiation was estimated from the inflection point on the plot of the DMPO-OH yield versus DMPO linear-density. The linear-density of X-ray-induced markedly dense •OH was estimated as 1168 µm-1, which was converted to 0.86 nm as the intermolecular distance and 2.6 M as the local concentration.

18.
Antioxid Redox Signal ; 36(1-3): 95-121, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34148403

RESUMO

Significance:In vivo assessment of paramagnetic and diamagnetic conversions of nitroxyl radicals based on cyclic redox mechanism can be an index of tissue redox status. The redox mechanism of nitroxyl radicals, which enables their use as a normal tissue-selective radioprotector, is seen as being attractive on planning radiation therapy. Recent Advances:In vivo redox imaging using nitroxyl radicals as redox-sensitive contrast agents has been developed to assess tissue redox status. Chemical and biological behaviors depending on chemical structures of nitroxyl radical compounds have been understood in detail. Polymer types of nitroxyl radical contrast agents and/or nitroxyl radical-labeled drugs were designed for approaching theranostics. Critical Issues: Nitroxyl radicals as magnetic resonance imaging (MRI) contrast agents have several advantages compared with those used in electron paramagnetic resonance (EPR) imaging, while support by EPR spectroscopy is important to understand information from MRI. Redox-sensitive paramagnetic contrast agents having a medicinal benefit, that is, nitroxyl-labeled drug, have been developed and proposed. Future Directions: A development of suitable nitroxyl contrast agent for translational theranostic applications with high reaction specificity and low normal tissue toxicity is under progress. Nitroxyl radicals as redox-sensitive magnetic resonance contrast agents can be a useful tool to detect an abnormal tissue redox status such as disordered oxidative stress. Antioxid. Redox Signal. 36, 95-121.


Assuntos
Meios de Contraste , Medicina de Precisão , Meios de Contraste/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Óxidos de Nitrogênio/química , Oxirredução
19.
Antioxidants (Basel) ; 10(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34943069

RESUMO

Recently, increasing attention has been paid to quantum mechanical behavior in biology. In this study, we investigated the involvement of quantum mechanical tunneling in the hydrogen-transfer reaction from Trolox, a water-soluble analog of vitamin E (α-tocopherol), to 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) in a phosphate buffer solution (0.05 M, pH 7.0). DPPH• was used as a reactivity model of reactive oxygen species and solubilized in water using ß-cyclodextrin (ß-CD). The second-order rate constants, kH and kD, in 0.05 M phosphate buffer solutions prepared with H2O (pH 7.0) and D2O (pD 7.0), respectively, were determined for the reaction between Trolox and DPPH•, using a stopped-flow technique at various temperatures (283-303 K). Large kinetic isotope effects (KIE, kH/kD) were observed for the hydrogen-transfer reaction from Trolox to the ß-CD-solubilized DPPH• in the whole temperature range. The isotopic ratio of the Arrhenius prefactor (AH/AD = 0.003), as well as the isotopic difference in the activation energies (19 kJ mol-1), indicated that quantum mechanical tunneling plays a role in the reaction.

20.
Free Radic Res ; 55(5): 547-555, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34569399

RESUMO

The effects of a magnetic field longitudinal to the ion beam track on the generation of hydroxyl radicals (•OH) and hydrogen peroxide (H2O2) in water were investigated. A longitudinal magnetic field was reported to enhance the biological effects of the ion beam. However, the mechanism of the increased cell death by a longitudinal magnetic field has not been clarified. The local density of •OH generation was estimated by a method based on the EPR spin-trapping. A series of reaction mixtures containing varying concentrations (0.76‒2278 mM) of DMPO was irradiated by 16 Gy of carbon- or iron-ion beams at the Heavy-Ion Medical Accelerator in Chiba (HIMAC, NIRS/QST, Chiba, Japan) with or without a longitudinal magnetic field (0.0, 0.3, or 0.6 T). The DMPO-OH yield in the sample solutions was measured by X-band EPR and plotted versus DMPO density. O2-dependent and O2-independent H2O2 yields were measured. An aliquot of ultra-pure water was irradiated by carbon-ion beams with or without a longitudinal magnetic field. Irradiation experiments were performed under air or hypoxic conditions. H2O2 generation in irradiated water samples was quantified by an EPR spin-trapping, which measures •OH synthesized from H2O2 by UVB irradiation. Relatively sparse •OH generation caused by particle beams in water were not affected by loading a magnetic field on the beam track. O2-dependent H2O2 generation decreased and oxygen-independent H2O2 generation increased after loading a magnetic field parallel to the beam track. Loading a magnetic field to the beam track made •OH generation denser or made dense •OH more reactive.


Assuntos
Peróxido de Hidrogênio , Água , Óxidos N-Cíclicos , Espectroscopia de Ressonância de Spin Eletrônica , Radical Hidroxila , Campos Magnéticos , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA