Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
J Neuropathol Exp Neurol ; 83(9): 736-744, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38964366

RESUMO

The circadian clock (CC) has biological and clinical implications in gliomas. Most studies focused on CC effects on the tumor microenvironment and the application of chronotherapy. The present study focused on CC gene expression patterns and intracellular oncogenic activities. Glioma gene expression data were collected from The Human Cancer Genome Atlas (TCGA) project. After applying inclusion and exclusion criteria, we selected 666 patients from TCGA-GBM and TCGA-LGG projects and included important clinicopathological variables. The entire cohort was subjected to clustering analysis and divided into CC1 and CC2 subtypes based on statistical, biological, and clinical criteria. CC2 gliomas showed higher expression of BMAL1 and CRY1 and lower expression of CRY2 and PER2 (adjusted P < .001). CC2 gliomas had q higher activity of cell proliferation, metabolic reprogramming, angiogenesis, hypoxia, and many oncogenic signals (P < .001). The CC2 subtype contained a higher proportion of glioblastomas (P < .001) and had a worse prognosis (P < .001). Stratified Kaplan-Meier and multivariable Cox analyses illustrated that the CC subtype is an independent prognostic factor to clinicopathological characteristics (P < .001), genetic aberrations (P = .006), and biological processes (P < .001). Thus, this study shows statistical evidence of CC subtypes and their biological, and clinicopathological significance in adult gliomas.


Assuntos
Neoplasias Encefálicas , Relógios Circadianos , Epigênese Genética , Glioma , Humanos , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Relógios Circadianos/genética , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Regulação Neoplásica da Expressão Gênica/genética , Idoso , Estudos de Coortes
3.
J Allergy Clin Immunol Glob ; 3(3): 100249, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38764489

RESUMO

Background: The KIT receptor tyrosine kinase and its ligand, stem cell factor (SCF), control proliferation and survival of mast cells. Thus, targeting KIT signaling may show promise for the treatment of allergic diseases involving mast cells. Recently, we discovered a new compound, MOD000001, as a potential small-molecule KIT kinase inhibitor by using an in silico approach. Objective: We sought to determine whether MOD000001 is highly selective to KIT, inhibits KIT signaling in mast cells, and affects IgE-mediated mast cell activation. Methods: The interaction of MOD000001 with 468 human kinases and its inhibitory activity against KIT were profiled and evaluated by using KINOMEscan (Discover X/Eurofins Corporation, Fremont, Calif) and cell-free kinase assays, respectively. The effects of MOD000001 on SCF-dependent signaling were examined by using primary mouse and human mast cells. The effects of MOD000001 on SCF-induced degranulation and passive cutaneous anaphylaxis reaction were examined in mice. Results: MOD000001 interacted with KIT and inhibited KIT kinase activity with high selectivity. MOD000001 suppressed SCF-induced KIT signaling in mouse and human mast cells and in mice. Passive cutaneous anaphylaxis reaction was suppressed in mice treated with MOD000001 both for a short-term (1 week) and for a long-term (7 weeks). Mice treated with MOD000001 for a long-term, but not for a short-term, showed skin mast cell reduction. Conclusions: MOD000001 is a highly selective KIT inhibitor that can suppress IgE-mediated mast cell activation in vivo. MOD000001 may do so by reducing tissue mast cell numbers or by other unknown mechanisms. The findings suggest potential benefits of MOD000001 for allergic diseases involving IgE-mediated mast cell activation.

4.
Biochem Biophys Res Commun ; 690: 149295, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000295

RESUMO

BACKGROUND: Bmal1 (Brain and muscle arnt-like, or Arntl) is a bHLH/PAS domain transcription factor central to the transcription/translation feedback loop of the circadian clock. Mast cells are crucial for effector functions in allergic reaction and their activity follows a circadian rhythm. However, the functional roles of Bmal1 in mast cells remain to be determined. PURPOSE: This study aimed to elucidate the specific roles of Bmal1 in IgE-dependent mast cell degranulation. RESULTS: IgE-dependent degranulation was enhanced in bone marrow-derived mast cells (BMMCs) derived from Bmal1-deficient mice (Bmal1-KO mice) compared to that in BMMCs derived from wild-type mice (WT mice) in the absence of 2-Mercaptoethanol (2-ME) in culture. Mast cell-deficient KitW-sh mice reconstituted with Bmal1-KO BMMCs showed more robust passive cutaneous anaphylactic (PCA) reactions, an in vivo model of IgE-dependent mast cell degranulation, than KitW-sh mice reconstituted with WT BMMCs. In the absence of 2-ME in culture, the mRNA expression of the anti-oxidative genes NF-E2-related factor 2 (Nrf2), superoxide dismutase 2 (SOD2), and heme oxygenase-1 (HO-1) was lower and reactive oxygen species (ROS) generation was higher in Bmal1-KO BMMCs than in WT BMMCs at steady state. The IgE-dependent ROS generation and degranulation were enhanced in Bmal1-KO BMMCs compared to WT BMMCs in the absence of 2-ME in culture. The addition of 2-ME into the culture abrogated or weakened the differences in anti-oxidative gene expression, ROS generation, and IgE-dependent degranulation between WT and Bmal1-KO BMMCs. CONCLUSION: The current findings suggest that Bmal1 controls the expression of anti-oxidative genes in mast cells and Bmal1 deficiency enhanced IgE-dependent degranulation associated with promotion of ROS generation. Thus, Bmal1 may function as a key molecule that integrates redox homeostasis and effector functions in mast cells.


Assuntos
Fatores de Transcrição ARNTL , Mastócitos , Animais , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Degranulação Celular , Imunoglobulina E/metabolismo , Mastócitos/metabolismo , Mercaptoetanol/metabolismo , Camundongos Knockout , Espécies Reativas de Oxigênio/metabolismo
5.
J Allergy Clin Immunol Glob ; 3(1): 100198, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38155861

RESUMO

Background: In Japan, pollinosis caused by the Japanese cypress (JCy) Chamaecyparis obtusa is among the very common seasonal allergies. In JCy pollinosis, Cha o 1 is the first major allergen, and Cha o 2 is the second major allergen. Recently, Cha o 3 was identified as a new JCy pollen allergen in JCy pollinosis. However, the relative contribution of Cha o 3 to JCy pollinosis compared with that of Cha o 1 and that of Cha o 2 has not been fully elucidated. Objective: This study aimed to clarify the allergenicity of Cha o 3 compared with that of Cha o 1 and Cha o 2 in JCy pollinosis. Methods: We recruited 27 patients with JCy pollinosis and performed the basophil activation test (BAT) with native (n) Cha o 1, Cha o 2, and Cha o 3 purified from JCy pollen. In addition, we a performed JCy-specific IgE suppression test. Results: In the BAT, 26 of 27 patients (96%) and 18 of 27 patients (67%) showed positive basophil activation in response to n Cha o 1 and n Cha o 2, respectively, as judged by CD203c expression. Little CD203c expression in response to n Cha o 3 was seen. The presence of n Cha o 3 marginally reduced the titer levels of JCy-specific IgE. Conclusion: Cha o 3 showed little ability to activate basophils and suppress JCy-specific IgE titers compared with Cha o 1 or Cha o 2 in patients with JCy pollinosis. Thus, Cha o 3 may not be a major allergen in JCy pollinosis.

7.
Transl Lung Cancer Res ; 12(10): 1972-1986, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38025816

RESUMO

Background: SLC22A3, the gene which encodes organic cation transporter (OCT)-3, has been linked to the prognosis of several types of cancer. However, its role in lung squamous cell carcinoma (LSCC) has not been addressed elsewhere. Methods: We analyzed gene expression, DNA methylation, and clinicopathological data from The Cancer Genome Atlas - Lung Squamous Cell Carcinoma (TCGA-LUSC) (n=501), a publicly available database exclusively consisting of LSCC patients. Using a 5 FPKM (fragments per kilobase of exon per million mapped fragments) cut-off, we divided LSCC patients into two groups: patients with tumors possessing high and low SLC22A3 expression (SLC22A3-high and SLC22A3-low, respectively). Prognostic significance was determined through Cox analyses and Kaplan-Meier curves for overall survival (OS) and disease-free survival (DFS). Differential methylation position (DMP), differentially gene expression, and pathway analyses were performed. Validation was carried out in GSE74777 (n=107), GSE37745 (n=66), GSE162520 (n=45) and GSE161537 (n=17). Results: SLC22A3-high LSCC patients had lower OS and DFS rates than SLC22A3-low LSCC patients. The different expression levels of SLC22A3 in LSCC were correlated with the methylation status of the SLC22A3 gene. Pathway analysis indicated that SLC22A3 expression levels were positively correlated with immune-related pathways such as inflammatory response and abundance of infiltrating immune cells in the tumor microenvironment (TME). Notably, in the SLC22A3-high group, many genes encoding immunological checkpoint inhibitory molecules were upregulated. In addition, SLC22A3 expression positively correlated with the Hot Oral Tumor (HOT) score, indicating high tumor immunogenicity. Conclusions: These findings suggest that high expression of SLC22A3 is associated with poor prognosis and high immunogenicity in LSCC tumors.

8.
Int J Mol Sci ; 24(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37373144

RESUMO

Ethyl caffeate (EC) is a natural phenolic compound that is present in several medicinal plants used to treat inflammatory disorders. However, its anti-inflammatory mechanisms are not fully understood. Here, we report that EC inhibits aryl hydrocarbon receptor (AhR) signaling and that this is associated with its anti-allergic activity. EC inhibited AhR activation, induced by the AhR ligands FICZ and DHNA in AhR signaling-reporter cells and mouse bone marrow-derived mast cells (BMMCs), as assessed by AhR target gene expressions such as CYP1A1. EC also inhibited the FICZ-induced downregulation of AhR expression and DHNA-induced IL-6 production in BMMCs. Furthermore, the pretreatment of mice with orally administered EC inhibited DHNA-induced CYP1A1 expression in the intestine. Notably, both EC and CH-223191, a well-established AhR antagonist, inhibited IgE-mediated degranulation in BMMCs grown in a cell culture medium containing significant amounts of AhR ligands. Furthermore, oral administration of EC or CH-223191 to mice inhibited the PCA reaction associated with the suppression of constitutive CYP1A1 expression within the skin. Collectively, EC inhibited AhR signaling and AhR-mediated potentiation of mast cell activation due to the intrinsic AhR activity in both the culture medium and normal mouse skin. Given the AhR control of inflammation, these findings suggest a novel mechanism for the anti-inflammatory activity of EC.


Assuntos
Mastócitos , Receptores de Hidrocarboneto Arílico , Camundongos , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Mastócitos/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Ligantes , Anti-Inflamatórios/metabolismo
9.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108640

RESUMO

The pathology of asthma is characterized by marked day-night variation, which is likely controlled by circadian clock activity. This study aimed to clarify the association of core circadian clock gene expression with clinical features of asthma. For this purpose, we accessed the National Center for Biotechnology Information database and analyzed transcriptomes of peripheral blood mononuclear cells and clinical characteristics of 134 pediatric/adolescent patients with asthma. Based on the expression patterns of seven core circadian clock genes (CLOCK, BMAL1, PER1-3, CRY1-2), we identified three circadian clusters (CCs) with distinct comorbidities and transcriptomic expressions. In the three CC subtypes, allergic rhinitis, and atopic dermatitis, both asthma comorbidities occurred in different proportions: CC1 had a high proportion of allergic rhinitis and atopic dermatitis; CC2 had a high proportion of atopic dermatitis but a low proportion of allergic rhinitis; and CC3 had a high proportion of allergic rhinitis but a low proportion of atopic dermatitis. This might be associated with the low activity of the FcεRI signaling pathway in CC2 and the cytokine-cytokine receptor interaction pathways in CC3. This is the first report to consider circadian clock gene expression in subcategories of patients with asthma and to explore their contribution to pathophysiology and comorbidity.


Assuntos
Asma , Relógios Circadianos , Dermatite Atópica , Rinite Alérgica , Humanos , Criança , Adolescente , Dermatite Atópica/genética , Dermatite Atópica/complicações , Relógios Circadianos/genética , Leucócitos Mononucleares , Asma/complicações , Rinite Alérgica/genética , Comorbidade , Expressão Gênica
10.
Allergol Int ; 71(4): 425-431, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35853794

RESUMO

Mast cell activation is crucial to the development of allergic disease. New studies have shown that both IgE-dependent and -independent mast cell activation is temporally regulated by the circadian clock, a time-of-day-keeping system that consists of transcriptional-translational feedback loops of several clock genes. For instance, the core clock gene Clock controls the expression of the high-affinity IgE receptor (FcεRI) and interleukin-33 (IL-33) receptor ST2 on mast cells in a time-dependent manner. As a result, the threshold of IgE-dependent or IL-33-dependent mast cell activation differs between daytime and nighttime. This mechanism may underlie the observation that allergic disease shows a marked day-night change in symptom occurrence and severity. Consistent with this novel concept, environmental and lifestyle factors that disturb the normal rhythmicity of the circadian clock, such as irregular eating habits, can lead to the loss of circadian control of mast cell activation. Consequently, the degree of mast cell activation becomes equally strong at all times of day, which might clinically result in worsening allergic symptoms. Therefore, further understanding of the association between mast cell activation and the circadian clock is important to better manage patients with allergic disease in the real world, characterized by a "24/7 society" filled with environmental and lifestyle factors that disturb the circadian clock rhythmicity.


Assuntos
Hipersensibilidade , Mastócitos , Humanos , Hipersensibilidade/genética , Hipersensibilidade/metabolismo , Imunoglobulina E/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/metabolismo , Mastócitos/metabolismo , Receptores de IgE/genética , Receptores de IgE/metabolismo
11.
Arerugi ; 71(1): 22-26, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-35173120
12.
Nutrients ; 13(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209459

RESUMO

The benefits of probiotic supplementation to lactating mothers on human milk cytokines are inconclusive. Thus, we performed a comprehensive open-label pilot trial analysis of 27 human milk cytokines in lactating women with allergies (one to three months postpartum) to determine the effect of supplementation with a mixture of new probiotic strains. Participants voluntarily joined the probiotic (n = 41) or no supplementation control (n = 19) groups. The probiotic group took three probiotic tablets (Lactobacillus casei LC5, Bifidobacterium longum BG7, and Bacillus coagulans SANK70258) daily for one to three months postpartum. Milk samples were collected at one, two, and three months postpartum, and cytokine levels were measured using multiplex assays. The effects were analyzed using multivariate regression models. Eleven cytokines showed a positive rate of over 50% in the milk samples throughout testing in both groups. The positive rates of IL-1 receptor antagonist and IL-7 changed significantly with lactation progression in logistic regression models after adjusting for time and supplementation, whereas rates of other cytokines showed no significant differences. The lactational change patterns of IL-10 concentrations differed significantly between the two groups. A short-term supplementation of probiotics affects human milk cytokine levels in lactating women with a possible placebo effect still existing. Future placebo-controlled studies are needed to support these results, based on the estimated sample sizes in this study.


Assuntos
Povo Asiático , Citocinas/metabolismo , Suplementos Nutricionais , Leite Humano/química , Probióticos/farmacologia , Adulto , Feminino , Humanos , Recém-Nascido , Projetos Piloto , Estudos Retrospectivos
13.
Front Immunol ; 11: 1237, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595651

RESUMO

Allergic diseases such as allergic rhinitis, asthma, atopic dermatitis, and food allergy are characterized by epithelial barrier dysfunction and deregulated immune responses. Components of the circadian clock interact with critical elements of epithelial barrier function and immune responses, and regulate the biological processes on a 24-h cycle at steady state. This may represent an anticipatory defense response to day-night fluctuation of attack by noxious stimuli such as pathogens in the environment. This review will summarize clock control of epithelial barrier function and immune responses associated with allergic disease and offer novel insights and opportunities into how clock dysfunction impacts allergic disease. Importantly, perturbation of normal clock activity by genetic and environmental disturbances, such as chronic light cycle perturbations or irregular eating habits, deregulates epithelial barrier function and immune responses. This implies that the circadian clock is strongly linked to the fundamental biology of allergic disease, and that clock disruption can precipitate allergic disease by altering the epithelial barrier and immune functions. Given that contemporary lifestyles often involve chronic circadian disruptions such as shift work, we propose that lifestyle or therapeutic interventions that align the endogenous circadian clock with environmental cycles should be a part of the efforts to prevent or treat allergic disease in modern society.


Assuntos
Relógios Circadianos/imunologia , Hipersensibilidade/imunologia , Animais , Humanos
15.
Int J Infect Dis ; 94: 55-58, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32251791

RESUMO

Novel coronavirus (SARS-Coronavirus-2:SARS-CoV-2) which emerged in Wuhan, China, has spread to multiple countries rapidly. We report the first case of meningitis associated with SARS-CoV-2 who was brought in by ambulance due to a convulsion accompanied by unconsciousness. He had never been to any foreign countries. He felt generalized fatigue and fever (day 1). He saw doctors nearby twice (day 2 and 5) and was prescribed Laninamivir and antipyretic agents, His family visited his home and found that he was unconsciousness and lying on the floor in his vomit. He was immediately transported to this hospital by ambulance (day 9). Under emergency transport, he had transient generalized seizures that lasted about a minute. He had obvious neck stiffness. The specific SARS-CoV-2 RNA was not detected in the nasopharyngeal swab but was detected in a CSF. Anti- HSV 1 and varicella-zoster IgM antibodies were not detected in serum samples. A brain MRI showed hyperintensity along the wall of right lateral ventricle and hyperintense signal changes in the right mesial temporal lobe and hippocampus, suggesting the possibility of SARS-CoV-2 meningitis. This case warns the physicians of patients who have CNS symptoms.


Assuntos
Betacoronavirus , Infecções por Coronavirus/complicações , Encefalite/virologia , Meningite Viral/virologia , Pneumonia Viral/complicações , COVID-19 , China , Encefalite/diagnóstico por imagem , Fadiga , Febre , Humanos , Imageamento por Ressonância Magnética , Masculino , Meningite Viral/diagnóstico por imagem , Pandemias , SARS-CoV-2 , Adulto Jovem
17.
Int Immunol ; 32(4): 243-258, 2020 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-31858119

RESUMO

Secretory immunoglobulin A (SIgA), the most abundant antibody isotype in the body, maintains a mutual relationship with commensal bacteria and acts as a primary barrier at the mucosal surface. Colonization by commensal bacteria induces an IgA response, at least partly through a T-cell-independent process. However, the mechanism underlying the commensal-bacteria-induced T-cell-independent IgA response has yet to be fully clarified. Here, we show that commensal-bacteria-derived butyrate promotes T-cell-independent IgA class switching recombination (CSR) in the mouse colon. Notably, the butyrate concentration in human stools correlated positively with the amount of IgA. Butyrate up-regulated the production of transforming growth factor ß1 and all-trans retinoic acid by CD103+CD11b+ dendritic cells, both of which are critical for T-cell-independent IgA CSR. This effect was mediated by G-protein-coupled receptor 41 (GPR41/FFA3) and GPR109a/HCA2, and the inhibition of histone deacetylase. The butyrate-induced IgA response reinforced the colonic barrier function, preventing systemic bacterial dissemination under inflammatory conditions. These observations demonstrate that commensal-bacteria-derived butyrate contributes to the maintenance of the gut immune homeostasis by facilitating the T-cell-independent IgA response in the colon.


Assuntos
Butiratos/farmacologia , Colo/efeitos dos fármacos , Imunoglobulina A/imunologia , Linfócitos T/efeitos dos fármacos , Animais , Células Cultivadas , Técnicas de Cocultura , Colo/imunologia , Humanos , Switching de Imunoglobulina/efeitos dos fármacos , Switching de Imunoglobulina/imunologia , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Linfócitos T/imunologia
18.
Sci Rep ; 9(1): 18423, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804564

RESUMO

Interleukin-33 (IL-33)/ST2-mediated mast cell activation plays important roles in the pathophysiology of allergic diseases. Hence, pharmacologically targeting the IL-33/ST2 pathway in mast cells could help to treat such diseases. We found that resveratrol inhibits IL-33/ST2-mediated mast cell activation. Resveratrol suppressed IL-33-induced IL-6, IL-13, and TNF-α production in mouse bone marrow-derived mast cells (BMMCs), mouse fetal skin-derived mast cells, and human basophils. Resveratrol also attenuated cytokine expression induced by intranasal administration of IL-33 in mouse lung. IL-33-mediated cytokine production in mast cells requires activation of the NF-κB and MAPK p38-MAPK-activated protein kinase-2/3 (MK2/3)-PI3K/Akt pathway, and resveratrol clearly inhibited IL-33-induced activation of the MK2/3-PI3K/Akt pathway, but not the NF-κB pathway, without affecting p38 in BMMCs. Importantly, resveratrol inhibited the kinase activity of MK2, and an MK2/3 inhibitor recapitulated the suppressive effects of resveratrol. Resveratrol and an MK2/3 inhibitor also inhibited IgE-dependent degranulation and cytokine production in BMMCs, concomitant with suppression of the MK2/3-PI3K/Akt pathway. These findings indicate that resveratrol inhibits both IL-33/ST2-mediated and IgE-dependent mast cell activation principally by targeting the MK2/3-PI3K/Akt axis downstream of p38. Thus, resveratrol may have potential for the prevention and treatment of broad ranges of allergic diseases.


Assuntos
Hipersensibilidade/tratamento farmacológico , Interleucina-33/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Resveratrol/farmacologia , Administração Intranasal , Animais , Basófilos/efeitos dos fármacos , Basófilos/imunologia , Degranulação Celular/efeitos dos fármacos , Degranulação Celular/imunologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Hipersensibilidade/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/antagonistas & inibidores , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Interleucina-33/administração & dosagem , Interleucina-33/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pulmão/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Masculino , Mastócitos/imunologia , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resveratrol/uso terapêutico
19.
Int J Mol Sci ; 20(24)2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31847374

RESUMO

The cell-autonomous circadian clock regulates IgE- and IL-33-mediated mast cell activation, both of which are key events in the development of allergic diseases. Accordingly, clock modifiers could be used to treat allergic diseases, as well as many other circadian-related diseases, such as sleep and metabolic disorders. The nuclear receptors REV-ERB-α and -ß (REV-ERBs) are crucial components of the circadian clockwork. Efforts to pharmacologically target REV-ERBs using putatively specific synthetic agonists, particularly SR9009, have yielded beneficial effects on sleep and metabolism. Here, we sought to determine whether REV-ERBs are functional in the circadian clockwork in mast cells and, if so, whether SR9009 affects IgE- and IL-33-mediated mast cell activation. Bone marrow-derived mast cells (BMMCs) obtained from wild-type mice expressed REV-ERBs, and SR9009 or other synthetic REV-ERBs agonists affected the mast cell clockwork. SR9009 inhibited IgE- and IL-33-mediated mast cell activation in wild-type BMMCs in association with inhibition of Gab2/PI3K and NF-κB activation. Unexpectedly, these suppressive effects of SR9009 were observed in BMMCs following mutation of the core circadian gene Clock. These findings suggest that SR9009 inhibits IgE- and IL-33-mediated mast cell activation independently of the functional circadian clock activity. Thus, SR9009 or other synthetic REV-ERB agonists may have potential for anti-allergic agents.


Assuntos
Imunoglobulina E/metabolismo , Interleucina-33/antagonistas & inibidores , Mastócitos/efeitos dos fármacos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/agonistas , Pirrolidinas/farmacologia , Receptores Citoplasmáticos e Nucleares/agonistas , Tiofenos/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Antialérgicos/farmacologia , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Relógios Circadianos/efeitos dos fármacos , Hipersensibilidade/tratamento farmacológico , Hipersensibilidade/metabolismo , Masculino , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sono/efeitos dos fármacos
20.
Sci Rep ; 9(1): 15958, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685912

RESUMO

Venomous snakebites can induce local tissue damage, including necrosis of soft tissues, haemorrhage, blistering and local swelling associated with plasma extravasation, which can lead to lethal complications such as hypovolemic shock. However, the details of the underlying mechanisms remain unknown. In this study, we showed that intradermal treatment of mice with venom rhodocytin from the Malayan viper Calloselasma rhodostoma induced plasma extravasation, dependent on C-type lectin-like receptor 2 (CLEC-2) on platelets. Rhodocytin-induced plasma extravasation also relied on mast cells and histamine. In vitro co-culture of rhodocytin-activated platelets with mast cells induced histamine release from mast cells in an ATP/P2X7-dependent manner. Consistent with this, blockade or deficiency of P2X7 in mast cells suppressed rhodocytin-induced plasma extravasation in the skin. Together, these findings indicate that rhodocytin induces plasma extravasation by triggering platelet activation via CLEC-2, followed by activation of mast cells and histamine release via the ATP/P2X7 pathway. These results reveal a previously unrecognized mechanism by which snake venom increases vascular permeability via complex venom toxin-mediated interactions between platelets and mast cells.


Assuntos
Plaquetas/metabolismo , Comunicação Celular/efeitos dos fármacos , Edema/etiologia , Edema/metabolismo , Mastócitos/metabolismo , Venenos de Víboras/toxicidade , Trifosfato de Adenosina/metabolismo , Biomarcadores , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/imunologia , Vasos Sanguíneos/metabolismo , Edema/patologia , Expressão Gênica , Histamina/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/imunologia , Pele/metabolismo , Pele/patologia , Venenos de Víboras/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA