Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 9: 799851, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957052

RESUMO

The occurrence of hydrogen atom-ordered form of ice Ih, ice XI, in the outer Solar System has been discussed based on laboratory experiments because its ferroelectricity influences the physical processes in the outer Solar System. However, the formation of ice XI in that region is still unknown due to a lack of formation conditions at temperatures higher than 72 K and the effect of UV-rays on the phase transition from ice I to ice XI. As a result, we observed the UV-irradiation process on ice Ih and ice Ic using a newly developed ultra-high vacuum cryogenic transmission electron microscope. We found that ice Ih transformed to ice XI at temperatures between 75 and 140 K with a relatively small UV dose. Although ice Ic partially transformed to ice XI at 83 K, the rate of transformation was slower than for ice Ih. These findings point to the formation of ice XI at temperatures greater than 72 K via UV irradiation of ice I crystals in the Solar System; icy grains and the surfaces of icy satellites in the Jovian and Saturnian regions.

2.
Philos Trans A Math Phys Eng Sci ; 377(2146): 20180393, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-30982456

RESUMO

An impurity effect on ice crystal growth in supercooled water is an important subject in relation to ice crystal formation in various conditions in the Earth's cryosphere regions. In this review, we consider antifreeze glycoprotein molecules as an impurity. These molecules are well known as functional molecules for controlling ice crystal growth by their adsorption on growing ice/water interfaces. Experiments on free growth of ice crystals in supercooled water containing an antifreeze protein were conducted on the ground and in the International Space Station, and the normal growth rates for the main crystallographic faces of ice, namely, basal and prismatic faces, were precisely measured as functions of growth conditions and time. The crystal-plane-dependent functions of AFGP molecules for ice crystal growth were clearly shown. Based on the magnitude relationship for normal growth rates among basal, prismatic and pyramidal faces, we explain the formation of a dodecahedral external shape of an ice crystal in relation to the key principle governing the growth of polyhedral crystals. Finally, we emphasize that the crystal-plane dependence of the function of antifreeze proteins on ice crystal growth relates to the freezing prevention of living organisms in sub-zero temperature conditions. This article is part of the theme issue 'The physics and chemistry of ice: scaffolding across scales, from the viability of life to the formation of planets'.

3.
Sci Rep ; 7: 43157, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262787

RESUMO

The free growth of ice crystals in supercooled bulk water containing an impurity of glycoprotein, a bio-macromolecule that functions as 'antifreeze' in living organisms in a subzero environment, was observed under microgravity conditions on the International Space Station. We observed the acceleration and oscillation of the normal growth rates as a result of the interfacial adsorption of these protein molecules, which is a newly discovered impurity effect for crystal growth. As the convection caused by gravity may mitigate or modify this effect, secure observations of this effect were first made possible by continuous measurements of normal growth rates under long-term microgravity condition realized only in the spacecraft. Our findings will lead to a better understanding of a novel kinetic process for growth oscillation in relation to growth promotion due to the adsorption of protein molecules and will shed light on the role that crystal growth kinetics has in the onset of the mysterious antifreeze effect in living organisms, namely, how this protein may prevent fish freezing.


Assuntos
Proteínas Anticongelantes/metabolismo , Cristalização , Gelo , Poluentes Químicos da Água/metabolismo , Ausência de Peso
4.
Proc Natl Acad Sci U S A ; 113(7): 1749-53, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26831089

RESUMO

Surfaces of ice are covered with thin liquid water layers, called quasi-liquid layers (QLLs), even below their melting point (0 °C), which govern a wide variety of phenomena in nature. We recently found that two types of QLL phases appear that exhibit different morphologies (droplets and thin layers) [Sazaki G. et al. (2012) Proc Natl Acad Sci USA 109(4):1052-1055]. However, revealing the thermodynamic stabilities of QLLs remains a longstanding elusive problem. Here we show that both types of QLLs are metastable phases that appear only if the water vapor pressure is higher than a certain critical supersaturation. We directly visualized the QLLs on ice crystal surfaces by advanced optical microscopy, which can detect 0.37-nm-thick elementary steps on ice crystal surfaces. At a certain fixed temperature, as the water vapor pressure decreased, thin-layer QLLs first disappeared, and then droplet QLLs vanished next, although elementary steps of ice crystals were still growing. These results clearly demonstrate that both types of QLLs are kinetically formed, not by the melting of ice surfaces, but by the deposition of supersaturated water vapor on ice surfaces. To our knowledge, this is the first experimental evidence that supersaturation of water vapor plays a crucially important role in the formation of QLLs.

5.
Proc Natl Acad Sci U S A ; 109(4): 1052-5, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22232653

RESUMO

Ice plays crucially important roles in various phenomena because of its abundance on Earth. However, revealing the dynamic behavior of quasi-liquid layers (QLLs), which governs the surface properties of ice crystals at temperatures near the melting point, remains an experimental challenge. Here we show that two types of QLL phases appear that exhibit different morphologies and dynamics. We directly visualized the two types of QLLs on ice crystal surfaces by advanced optical microscopy, which can visualize the individual 0.37-nm-thick elementary steps on ice crystal surfaces. We found that they had different stabilities and different interactions with ice crystal surfaces. The two immiscible QLL phases appeared heterogeneously, moved around, and coalesced dynamically on ice crystal surfaces. This picture of surface melting is quite different from the conventional picture in which one QLL phase appears uniformly on ice crystal surfaces.


Assuntos
Gelo/análise , Microscopia Confocal/métodos , Microscopia de Interferência/métodos , Transição de Fase , Água/química , Observação
6.
Proc Natl Acad Sci U S A ; 107(46): 19702-7, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20974928

RESUMO

Due to the abundance of ice on earth, the phase transition of ice plays crucially important roles in various phenomena in nature. Hence, the molecular-level understanding of ice crystal surfaces holds the key to unlocking the secrets of a number of fields. In this study we demonstrate, by laser confocal microscopy combined with differential interference contrast microscopy, that elementary steps (the growing ends of ubiquitous molecular layers with the minimum height) of ice crystals and their dynamic behavior can be visualized directly at air-ice interfaces. We observed the appearance and lateral growth of two-dimensional islands on ice crystal surfaces. When the steps of neighboring two-dimensional islands coalesced, the contrast of the steps always disappeared completely. We were able to discount the occurrence of steps too small to detect directly because we never observed the associated phenomena that would indicate their presence. In addition, classical two-dimensional nucleation theory does not support the appearance of multilayered two-dimensional islands. Hence, we concluded that two-dimensional islands with elementary height (0.37 and 0.39 nm on basal and prism faces, respectively) were visualized by our optical microscopy. On basal and prism faces, we also observed the spiral growth steps generated by screw dislocations. The distance between adjacent spiral steps on a prism face was about 1/20 of that on a basal face. Hence, the step ledge energy of a prism face was 1/20 of that on a basal face, in accord with the known lower-temperature roughening transition of the prism face.

7.
Rev Sci Instrum ; 80(11): 115102, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19947752

RESUMO

A crystal growth apparatus was designed and built to study the effect of growth modifiers, antifreeze proteins and antifreeze glycoproteins (AFGPs), on ice crystal growth kinetics and morphology. We used a capillary growth technique to obtain a single ice crystal with well-defined crystallographic orientation grown in AFGP solution. The basal plane was readily observed by rotation of the capillary. The main growth chamber is approximately a 0.8 ml cylindrical volume. A triple window arrangement was used to minimize temperature gradients and allow for up to 10 mm working distance objective lens. Temperature could be established to within +/-10 mK in as little as 3.5 min and controlled to within +/-2 mK after 15 min for at least 10 h. The small volume growth chamber and fast equilibration times were necessary for parabolic flight microgravity experiments. The apparatus was designed for use with inverted and side mount configurations.


Assuntos
Cristalização/instrumentação , Gelo , Proteínas Anticongelantes/química , Interferometria , Cinética , Microscopia , Propriedades de Superfície , Temperatura
8.
Magn Reson Imaging ; 23(2): 333-5, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15833639

RESUMO

An MR imaging system was developed to visualize brine drainage channels in sea spray icing. Brine pockets trapped in spray-ice matrices during ice growth are structural features of sea spray icing. Brine in the spray ice sample had drained out; therefore, using a suction pump, we filled the air gaps in the drainage channels with dodecane. In the experiments, 0.5-1.0 h was necessary to accumulate signals sufficient to obtain a 3-D micro-image; the image matrix comprised 128(3) voxels (each voxel was 200 microm per side). The MIP view showed that sea spray icing has a developed drainage-channel network structure.


Assuntos
Gelo , Espectroscopia de Ressonância Magnética , Água do Mar , Alcanos
9.
Magn Reson Imaging ; 21(3-4): 351-4, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12850731

RESUMO

MR microscopy technique was introduced to visualize and quantify the three-dimensional structure of snowpack. Since the NMR signal from the ice was week, we looked at the air space instead filling with dodecane or aniline doped with iron acetylacetonate. Four types of snow were tested: ice spheres, large rounded poly crystals, small rounded mono-crystals and depth hoar crystals. A specific specimen-cooling system was developed to keep the temperature below 0 degrees C. In the experiments 0.5 to 2 h were necessary to accumulate the signals enough to obtain a 3D micro-image; the image matrix 128(3), voxel size (200 microm)3 or 256(3) (120 microm)3. Comparison with the 2D data using the conventional section plane method was also carried out and MR microscopy is proved to be a very useful method to visualize the microstructure of snowpack.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Neve , Gelo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA