RESUMO
Intervertebral disc (IVD) degeneration is a leading cause of lower back pain (LBP). Current treatments primarily address symptoms without halting the degenerative process. Cell transplantation offers a promising approach for early-stage IVD degeneration, but challenges such as cell viability, retention, and harsh host environments limit its efficacy. This study aimed to compare the injectability and biocompatibility of human nucleus pulposus cells (hNPC) attached to two types of microscaffolds designed for minimally invasive delivery to IVD. Microscaffolds are developed from poly(lactic-co-glycolic acid) (PLGA) using electrospinning and femtosecond laser structuration. These microscaffolds are tested for their physical properties, injectability, and biocompatibility. This study evaluates cell adhesion, proliferation, and survival in vitro and ex vivo within a hydrogel-based nucleus pulposus model. The microscaffolds demonstrate enhanced surface architecture, facilitating cell adhesion and proliferation. Laser structuration improved porosity, supporting cell attachment and extracellular matrix deposition. Injectability tests show that microscaffolds can be delivered through small-gauge needles with minimal force, maintaining high cell viability. The findings suggest that laser-structured PLGA microscaffolds are viable for minimally invasive cell delivery. These microscaffolds enhance cell viability and retention, offering potential improvements in the therapeutic efficiency of cell-based treatments for discogenic LBP.
RESUMO
Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex etiology that lacks effective treatment. The therapeutic goals include alleviating symptoms, such as moisturizing and applying antibacterial and anti-inflammatory medications. Hence, there is an urgent need to develop a patch that effectively alleviates most of the AD symptoms. In this study, we employed a "green" cross-linking approach of poly(vinyl alcohol) (PVA) using glycerol, and we combined it with polyacrylonitrile (PAN) to fabricate core-shell (CS) nanofibers through electrospinning. Our designed structure offers multiple benefits as the core ensures controlled drug release and increases the strength of the patch, while the shell provides skin moisturization and exudate absorption. The efficient PVA cross-linking method facilitates the inclusion of sensitive molecules such as fermented oils. In vitro studies demonstrate the patches' exceptional biocompatibility and efficacy in minimizing cell ingrowth into the CS structure containing argan oil, a property highly desirable for easy removal of the patch. Histological examinations conducted on an ex vivo model showed the nonirritant properties of developed patches. Furthermore, the eradication of Staphylococcus aureus bacteria confirms the potential use of CS nanofibers loaded with argan oil or norfloxacin, separately, as an antibacterial patch for infected AD wounds. In vivo patch application studies on patients, including one with AD, demonstrated ideal patches' moisturizing effect. This innovative approach shows significant promise in enhancing life quality for AD sufferers by improving skin hydration and avoiding infections.
Assuntos
Antibacterianos , Dermatite Atópica , Staphylococcus aureus , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/patologia , Antibacterianos/química , Antibacterianos/farmacologia , Humanos , Staphylococcus aureus/efeitos dos fármacos , Nanofibras/química , Adesivo Transdérmico , Adesivos/química , Adesivos/farmacologia , Nanoestruturas/química , Animais , Pele/efeitos dos fármacos , Pele/patologiaRESUMO
Polycaprolactone (PCL), a recognized biopolymer, has emerged as a prominent choice for diverse biomedical endeavors due to its good mechanical properties, exceptional biocompatibility, and tunable properties. These attributes render PCL a suitable alternative biomaterial to use in biofabrication, especially the electrospinning technique, facilitating the production of nanofibers with varied dimensions and functionalities. However, the inherent hydrophobicity of PCL nanofibers can pose limitations. Conversely, acrylamide-based hydrogels, characterized by their interconnected porosity, significant water retention, and responsive behavior, present an ideal matrix for numerous biomedical applications. By merging these two materials, one can harness their collective strengths while potentially mitigating individual limitations. A robust interface and effective anchorage during the composite fabrication are pivotal for the optimal performance of the nanoplatforms. Nanoplatforms are subject to varying degrees of tension and physical alterations depending on their specific applications. This is particularly pertinent in the case of layered nanostructures, which require careful consideration to maintain structural stability and functional integrity in their intended applications. In this study, we delve into the influence of the fiber dimensions, orientation and surface modifications of the nanofibrous layer and the hydrogel layer's crosslinking density on their intralayer interface to determine the optimal approach. Comprehensive mechanical pull-out tests offer insights into the interfacial adhesion and anchorage between the layers. Notably, plasma treatment of the hydrophobic nanofibers and the stiffness of the hydrogel layer significantly enhance the mechanical effort required for fiber extraction from the hydrogels, indicating improved anchorage. Furthermore, biocompatibility assessments confirm the potential biomedical applications of the proposed nanoplatforms.
RESUMO
Hydrogels with multifunctional properties activated at specific times have gained significant attention in the biomedical field. As bacterial infections can cause severe complications that negatively impact wound repair, herein, we present the development of a stimuli-responsive, injectable, and in situ-forming hydrogel with antibacterial, self-healing, and drug-delivery properties. In this study, we prepared a Pluronic F-127 (PF127) and sodium alginate (SA)-based hydrogel that can be targeted to a specific tissue via injection. The PF127/SA hydrogel was incorporated with polymeric short-filaments (SFs) containing an anti-inflammatory drug - ketoprofen, and stimuli-responsive polydopamine (PDA) particles. The hydrogel, after injection, could be in situ gelated at the body temperature, showing great in vitro stability and self-healing ability after 4 h of incubation. The SFs and PDA improved the hydrogel injectability and compressive strength. The introduction of PDA significantly accelerated the KET release under near-infrared light exposure and extended its release validity period. The excellent composites' photo-thermal performance led to antibacterial activity against representative Gram-positive and Gram-negative bacteria, resulting in 99.9% E. coli and S. aureus eradication after 10 min of NIR light irradiation. In vitro, fibroblast L929 cell studies confirmed the materials' biocompatibility and paved the way toward further in vivo and clinical application of the system for chronic wound treatments.
Assuntos
Antibacterianos , Hidrogéis , Antibacterianos/farmacologia , Hidrogéis/farmacologia , Staphylococcus aureus , Escherichia coli , Bactérias Gram-Negativas , Bactérias Gram-PositivasRESUMO
The shortage of face masks and the lack of antipathogenic functions has been significant since the recent pandemic's inception. Moreover, the disposal of an enormous number of contaminated face masks not only carries a significant environmental impact but also escalates the risk of cross-contamination. This study proposes a strategy to upgrade available surgical masks into antibacterial masks with enhanced particle and bacterial filtration. Plasmonic nanoparticles can provide photodynamic and photothermal functionalities for surgical masks. For this purpose, gold nanorods act as on-demand agents to eliminate pathogens on the surface of the masks upon near-infrared light irradiation. Additionally, the modified masks are furnished with polymer electrospun nanofibrous layers. These electrospun layers can enhance the particle and bacterial filtration efficiency, not at the cost of the pressure drop of the mask. Consequently, fabricating these prototype masks could be a practical approach to upgrading the available masks to alleviate the environmental toll of disposable face masks.
Assuntos
Nanofibras , Nanopartículas , Nanotubos , Máscaras , FiltraçãoRESUMO
Current treatments of degenerated intervertebral discs often provide only temporary relief or address specific causes, necessitating the exploration of alternative therapies. Cell-based regenerative approaches showed promise in many clinical trials, but limitations such as cell death during injection and a harsh disk environment hinder their effectiveness. Injectable microscaffolds offer a solution by providing a supportive microenvironment for cell delivery and enhancing bioactivity. This study evaluated the safety and feasibility of electrospun nanofibrous microscaffolds modified with chitosan (CH) and chondroitin sulfate (CS) for treating degenerated NP tissue in a large animal model. The microscaffolds facilitated cell attachment and acted as an effective delivery system, preventing cell leakage under a high disc pressure. Combining microscaffolds with bone marrow-derived mesenchymal stromal cells demonstrated no cytotoxic effects and proliferation over the entire microscaffolds. The administration of cells attached to microscaffolds into the NP positively influenced the regeneration process of the intervertebral disc. Injectable poly(l-lactide-co-glycolide) and poly(l-lactide) microscaffolds enriched with CH or CS, having a fibrous structure, showed the potential to promote intervertebral disc regeneration. These features collectively address critical challenges in the fields of tissue engineering and regenerative medicine, particularly in the context of intervertebral disc degeneration.
Assuntos
Quitosana , Degeneração do Disco Intervertebral , Disco Intervertebral , Células-Tronco Mesenquimais , Animais , Degeneração do Disco Intervertebral/terapia , Engenharia Tecidual , Sulfatos de Condroitina/metabolismo , Quitosana/metabolismoRESUMO
Nanostructuring is a process involving surface manipulation at the nanometric level, which improves the mechanical and biological properties of biomaterials. Specifically, it affects the mechanotransductive perception of the microenvironment of cells. Mechanical force conversion into an electrical or chemical signal contributes to the induction of a specific cellular response. The relationship between the cells and growth surface induces a biointerface-modifying cytophysiology and consequently a therapeutic effect. In this study, we present the fabrication of graphene oxide (GO)-based nanofilms decorated with metallic nanoparticles (NPs) as potential coatings for biomaterials. Our investigation showed the effect of decorating GO with metallic NPs for the modification of the physicochemical properties of nanostructures in the form of nanoflakes and nanofilms. A comprehensive biocompatibility screening panel revealed no disturbance in the metabolic activity of human fibroblasts (HFFF2) and bone marrow stroma cells (HS-5) cultivated on the GO nanofilms decorated with gold and copper NPs, whereas a significant cytotoxic effect of the GO nanocomplex decorated with silver NPs was demonstrated. The GO nanofilm decorated with gold NPs beneficially managed early cell adhesion as a result of the transient upregulation of α1ß5 integrin expression, acceleration of cellspreading, and formation of elongated filopodia. Additionally, the cells, sensing the substrate derived from the nanocomplex enriched with gold NPs, showed reduced elasticity and altered levels of vimentin expression. In the future, GO nanocomplexes decorated with gold NPs can be incorporated in the structure of architecturally designed biomimetic biomaterials as biocompatible nanostructuring agents with proadhesive properties.
Assuntos
Grafite , Nanopartículas Metálicas , Nanoestruturas , Humanos , Adesão Celular , Nanoestruturas/química , Nanopartículas Metálicas/química , Grafite/farmacologia , Grafite/química , Ouro/farmacologia , Ouro/química , Materiais Biocompatíveis/farmacologiaRESUMO
As scientists discovered that raw neurological signals could translate into bioelectric information, brain-machine interfaces (BMI) for experimental and clinical studies have experienced massive growth. Developing suitable materials for bioelectronic devices to be used for real-time recording and data digitalizing has three important necessitates which should be covered. Biocompatibility, electrical conductivity, and having mechanical properties similar to soft brain tissue to decrease mechanical mismatch should be adopted for all materials. In this review, inorganic nanoparticles and intrinsically conducting polymers are discussed to impart electrical conductivity to systems, where soft materials such as hydrogels can offer reliable mechanical properties and a biocompatible substrate. Interpenetrating hydrogel networks offer more mechanical stability and provide a path for incorporating polymers with desired properties into one strong network. Promising fabrication methods, like electrospinning and additive manufacturing, allow scientists to customize designs for each application and reach the maximum potential for the system. In the near future, it is desired to fabricate biohybrid conducting polymer-based interfaces loaded with cells, giving the opportunity for simultaneous stimulation and regeneration. Developing multi-modal BMIs, Using artificial intelligence and machine learning to design advanced materials are among the future goals for this field. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Assuntos
Interfaces Cérebro-Computador , Nanoestruturas , Polímeros/química , Inteligência Artificial , Hidrogéis/químicaRESUMO
Recent advances in the field of skin patches have promoted the development of wearable and implantable bioelectronics for long-term, continuous healthcare management and targeted therapy. However, the design of electronic skin (e-skin) patches with stretchable components is still challenging and requires an in-depth understanding of the skin-attachable substrate layer, functional biomaterials and advanced self-powered electronics. In this comprehensive review, we present the evolution of skin patches from functional nanostructured materials to multi-functional and stimuli-responsive patches towards flexible substrates and emerging biomaterials for e-skin patches, including the material selection, structure design and promising applications. Stretchable sensors and self-powered e-skin patches are also discussed, ranging from electrical stimulation for clinical procedures to continuous health monitoring and integrated systems for comprehensive healthcare management. Moreover, an integrated energy harvester with bioelectronics enables the fabrication of self-powered electronic skin patches, which can effectively solve the energy supply and overcome the drawbacks induced by bulky battery-driven devices. However, to realize the full potential offered by these advancements, several challenges must be addressed for next-generation e-skin patches. Finally, future opportunities and positive outlooks are presented on the future directions of bioelectronics. It is believed that innovative material design, structure engineering, and in-depth study of fundamental principles can foster the rapid evolution of electronic skin patches, and eventually enable self-powered close-looped bioelectronic systems to benefit mankind.
Assuntos
Dispositivos Eletrônicos Vestíveis , Eletrônica , Fontes de Energia Elétrica , Próteses e ImplantesRESUMO
In neuroscience, the acquisition of neural signals from the brain cortex is crucial to analyze brain processes, detect neurological disorders, and offer therapeutic brain-computer interfaces. The design of neural interfaces conformable to the brain tissue is one of today's major challenges since the insufficient biocompatibility of those systems provokes a fibrotic encapsulation response, leading to an inaccurate signal recording and tissue damage precluding long-term/permanent implants. The design and production of a novel soft neural biointerface made of polyacrylamide hydrogels loaded with plasmonic silver nanocubes are reported herein. Hydrogels are surrounded by a silicon-based template as a supporting element for guaranteeing an intimate neural-hydrogel contact while making possible stable recordings from specific sites in the brain cortex. The nanostructured hydrogels show superior electroconductivity while mimicking the mechanical characteristics of the brain tissue. Furthermore, in vitro biological tests performed by culturing neural progenitor cells demonstrate the biocompatibility of hydrogels along with neuronal differentiation. In vivo chronic neuroinflammation tests on a mouse model show no adverse immune response toward the nanostructured hydrogel-based neural interface. Additionally, electrocorticography acquisitions indicate that the proposed platform permits long-term efficient recordings of neural signals, revealing the suitability of the system as a chronic neural biointerface.
Assuntos
Encéfalo , Hidrogéis , Camundongos , Animais , Hidrogéis/farmacologia , Condutividade Elétrica , Córtex CerebralRESUMO
Cranial bone loss presents a major clinical challenge and new regenerative approaches to address craniofacial reconstruction are in great demand. Induced pluripotent stem cell (iPSC) differentiation is a powerful tool to generate mesenchymal stromal cells (MSCs). Prior research demonstrated the potential of bone marrow-derived MSCs (BM-MSCs) and iPSC-derived mesenchymal progenitor cells via the neural crest (NCC-MPCs) or mesodermal lineages (iMSCs) to be promising cell source for bone regeneration. Overexpression of human recombinant bone morphogenetic protein (BMP)6 efficiently stimulates bone formation. The study aimed to evaluate the potential of iPSC-derived cells via neural crest or mesoderm overexpressing BMP6 and embedded in 3D printable bio-ink to generate viable bone graft alternatives for cranial reconstruction. Cell viability, osteogenic potential of cells, and bio-ink (Ink-Bone or GelXa) combinations were investigated in vitro using bioluminescent imaging. The osteogenic potential of bio-ink-cell constructs were evaluated in osteogenic media or nucleofected with BMP6 using qRT-PCR and in vitro µCT. For in vivo testing, two 2 mm circular defects were created in the frontal and parietal bones of NOD/SCID mice and treated with Ink-Bone, Ink-Bone + BM-MSC-BMP6, Ink-Bone + iMSC-BMP6, Ink-Bone + iNCC-MPC-BMP6, or left untreated. For follow-up, µCT was performed at weeks 0, 4, and 8 weeks. At the time of sacrifice (week 8), histological and immunofluorescent analyses were performed. Both bio-inks supported cell survival and promoted osteogenic differentiation of iNCC-MPCs and BM-MSCs in vitro. At 4 weeks, cell viability of both BM-MSCs and iNCC-MPCs were increased in Ink-Bone compared to GelXA. The combination of Ink-Bone with iNCC-MPC-BMP6 resulted in an increased bone volume in the frontal bone compared to the other groups at 4 weeks post-surgery. At 8 weeks, both iNCC-MPC-BMP6 and iMSC-MSC-BMP6 resulted in an increased bone volume and partial bone bridging between the implant and host bone compared to the other groups. The results of this study show the potential of NCC-MPC-incorporated bio-ink to regenerate frontal cranial defects. Therefore, this bio-ink-cell combination should be further investigated for its therapeutic potential in large animal models with larger cranial defects, allowing for 3D printing of the cell-incorporated material.
Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Osteogênese , Tinta , Crista Neural , Camundongos Endogâmicos NOD , Camundongos SCID , Diferenciação CelularRESUMO
In recent times, the use of personal protective equipment, such as face masks or respirators, is becoming more and more critically important because of common pollution; furthermore, face masks have become a necessary element in the global fight against the COVID-19 pandemic. For this reason, the main mission of scientists has become the development of face masks with exceptional properties that will enhance their performance. The versatility of electrospun polymer nanofibers has determined their suitability as a material for constructing "smart" filter media. This paper provides an overview of the research carried out on nanofibrous filters obtained by electrospinning. The progressive development of the next generation of face masks whose unique properties can be activated in response to a specific external stimulus is highlighted. Thanks to additional components incorporated into the fiber structure, filters can, for example, acquire antibacterial or antiviral properties, self-sterilize the structure, and store the energy generated by users. Despite the discovery of several fascinating possibilities, some of them remain unexplored. Stimuli-responsive filters have the potential to become products of large-scale availability and great importance to society as a whole.
Assuntos
COVID-19 , Máscaras , Humanos , Pandemias/prevenção & controle , COVID-19/prevenção & controle , Filtração , Nanotecnologia , Antivirais , Antibacterianos , PolímerosRESUMO
Adhesive and stretchable nanofibrous hydrogels have attracted extensive attraction in wound dressings, especially for joint wound treatment. However, adhesive hydrogels tend to display poor stretchable behavior. It is still a significant challenge to integrate excellent adhesiveness and stretchability in a nanofibrous hydrogel. Herein, a highly adhesive, stretchable, and breathable nanofibrous hydrogel was developed via an in situ hybrid cross-linking strategy of electrospun nanofibers comprising dopamine (DA) and gelatin methacryloyl (GelMA). Benefiting from the balance of cohesion and adhesion based on photocross-linking of methacryloyl (MA) groups in GelMA and the chemical/physical reaction between GelMA and DA, the nanofibrous hydrogels exhibited tunable adhesive and mechanical properties through varying MA substitution degrees of GelMA. The optimized GelMA60-DA exhibited 2.0 times larger tensile strength (2.4 MPa) with an elongation of about 200%, 2.3 times greater adhesive strength (9.1 kPa) on porcine skin, and 3.1 times higher water vapor transmission rate (10.9 kg m-2 d-1) compared with gelatin nanofibrous hydrogels. In parallel, the GelMA60-DA nanofibrous hydrogels could facilitate cell growth and accelerate wound healing. This work presented a type of breathable nanofibrous hydrogels with excellent adhesive and stretchable capacities, showing great promise as wound dressings.
Assuntos
Gelatina , Nanofibras , Adesivos , Bandagens , Gelatina/farmacologia , Hidrogéis , Metacrilatos , Nanofibras/uso terapêuticoRESUMO
The use of injectable biomaterials for cell delivery is a rapidly expanding field which may revolutionize the medical treatments by making them less invasive. However, creating desirable cell carriers poses significant challenges to the clinical implementation of cell-based therapeutics. At the same time, no method has been developed to produce injectable microscaffolds (MSs) from electrospun materials. Here the fabrication of injectable electrospun nanofibers is reported on, which retain their fibrous structure to mimic the extracellular matrix. The laser-assisted micro-scaffold fabrication has produced tens of thousands of MSs in a short time. An efficient attachment of cells to the surface and their proliferation is observed, creating cell-populated MSs. The cytocompatibility assays proved their biocompatibility, safety, and potential as cell carriers. Ex vivo results with the use of bone and cartilage tissues proved that NaOH hydrolyzed and chitosan functionalized MSs are compatible with living tissues and readily populated with cells. Injectability studies of MSs showed a high injectability rate, while at the same time, the force needed to eject the load is no higher than 25 N. In the future, the produced MSs may be studied more in-depth as cell carriers in minimally invasive cell therapies and 3D bioprinting applications.
Assuntos
Nanofibras , Materiais Biocompatíveis/química , Matriz Extracelular/química , Lasers , Nanofibras/química , Engenharia Tecidual/métodos , Alicerces Teciduais/químicaRESUMO
In recent years, the main quest of science has been the pioneering of the groundbreaking biomedical strategies needed for achieving a personalized medicine. Ribonucleic acids (RNAs) are outstanding bioactive macromolecules identified as pivotal actors in regulating a wide range of biochemical pathways. The ability to intimately control the cell fate and tissue activities makes RNA-based drugs the most fascinating family of bioactive agents. However, achieving a widespread application of RNA therapeutics in humans is still a challenging feat, due to both the instability of naked RNA and the presence of biological barriers aimed at hindering the entrance of RNA into cells. Recently, material scientists' enormous efforts have led to the development of various classes of nanostructured carriers customized to overcome these limitations. This work systematically reviews the current advances in developing the next generation of drugs based on nanotechnology-assisted RNA delivery. The features of the most used RNA molecules are presented, together with the development strategies and properties of nanostructured vehicles. Also provided is an in-depth overview of various therapeutic applications of the presented systems, including coronavirus disease vaccines and the newest trends in the field. Lastly, emerging challenges and future perspectives for nanotechnology-mediated RNA therapies are discussed.
Assuntos
COVID-19 , Ácidos Nucleicos , Vacinas contra COVID-19/uso terapêutico , Sistemas de Liberação de Medicamentos , Humanos , Nanotecnologia , Ácidos Nucleicos/uso terapêutico , Preparações Farmacêuticas , RNA/genéticaRESUMO
Intrinsically conducting polymers (ICPs) are widely used to fabricate biomaterials; their application in neural tissue engineering, however, is severely limited because of their hydrophobicity and insufficient mechanical properties. For these reasons, soft conductive polymer hydrogels (CPHs) are recently developed, resulting in a water-based system with tissue-like mechanical, biological, and electrical properties. The strategy of incorporating ICPs as a conductive component into CPHs is recently explored by synthesizing the hydrogel around ICP chains, thus forming a semi-interpenetrating polymer network (semi-IPN). In this work, a novel conductive semi-IPN hydrogel is designed and synthesized. The hybrid hydrogel is based on a poly(N-isopropylacrylamide-co-N-isopropylmethacrylamide) hydrogel where polythiophene is introduced as an ICP to provide the system with good electrical properties. The fabrication of the hybrid hydrogel in an aqueous medium is made possible by modifying and synthesizing the monomers of polythiophene to ensure water solubility. The morphological, chemical, thermal, electrical, electrochemical, and mechanical properties of semi-IPNs were fully investigated. Additionally, the biological response of neural progenitor cells and mesenchymal stem cells in contact with the conductive semi-IPN was evaluated in terms of neural differentiation and proliferation. Lastly, the potential of the hydrogel solution as a 3D printing ink was evaluated through the 3D laser printing method. The presented results revealed that the proposed 3D printable conductive semi-IPN system is a good candidate as a scaffold for neural tissue applications.
Assuntos
Hidrogéis , Tecido Nervoso , Condutividade Elétrica , Polímeros , Engenharia TecidualRESUMO
The spread of antimicrobial resistance requires the development of novel strategies to combat superbugs. Bacteriolytic enzymes (enzybiotics) that selectively eliminate pathogenic bacteria, including resistant strains and biofilms, are attractive alternatives to antibiotics, also as a component of a new generation of antimicrobial wound dressings. AuresinePlus is a novel, engineered enzybiotic effective against Staphylococcus aureus-one of the most common pathogenic bacteria, found in infected wounds with a very high prevalence of antibiotic resistance. We took advantage of its potent lytic activity, selectivity, and safety to prepare a set of biodegradable PLGA/chitosan fibers generated by electrospinning. Our aim was to produce antimicrobial nonwovens to deliver enzybiotics directly to the infected wound and better control its release and activity. Three different methods of enzyme immobilization were tested: physical adsorption on the previously hydrolyzed surface, and covalent bonding formation using N-hydroxysuccinimide/N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide (NHS/EDC) or glutaraldehyde (GA). The supramolecular structure and functional properties analysis revealed that the selected methods resulted in significant development of nanofibers surface topography resulting in an efficient enzybiotic attachment. Both physically adsorbed and covalently bound enzymes (by NHS/EDC method) exhibited prominent antibacterial activity. Here, we present the extensive comparison between methods for the effective attachment of the enzybiotic to the electrospun nonwovens to generate biomaterials effective against antibiotic-resistant strains. Our intention was to present a comprehensive proof-of-concept study for future antimicrobial wound dressing development.
RESUMO
Multifunctional nanomaterials with the ability to respond to near-infrared (NIR) light stimulation are vital for the development of highly efficient biomedical nanoplatforms with a polytherapeutic approach. Inspired by the mesoglea structure of jellyfish bells, a biomimetic multifunctional nanostructured pillow with fast photothermal responsiveness for NIR light-controlled on-demand drug delivery is developed. We fabricate a nanoplatform with several hierarchical levels designed to generate a series of controlled, rapid, and reversible cascade-like structural changes upon NIR light irradiation. The mechanical contraction of the nanostructured platform, resulting from the increase of temperature to 42 °C due to plasmonic hydrogel-light interaction, causes a rapid expulsion of water from the inner structure, passing through an electrospun membrane anchored onto the hydrogel core. The mutual effects of the rise in temperature and water flow stimulate the release of molecules from the nanofibers. To expand the potential applications of the biomimetic platform, the photothermal responsiveness to reach the typical temperature level for performing photothermal therapy (PTT) is designed. The on-demand drug model penetration into pig tissue demonstrates the efficiency of the nanostructured platform in the rapid and controlled release of molecules, while the high biocompatibility confirms the pillow potential for biomedical applications based on the NIR light-driven multitherapy strategy.
Assuntos
Hidrogéis/química , Raios Infravermelhos , Nanofibras/química , Nanoestruturas/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Ouro/química , Humanos , Camundongos , Microscopia de Fluorescência , Poliésteres/química , Porosidade , Rodaminas/química , Rodaminas/metabolismo , Pele/química , Pele/patologia , SuínosRESUMO
The poor intrinsic mechanical properties of chitosan hydrogels have greatly hindered their practical applications. Inspired by nature, we proposed a strategy to enhance the mechanical properties of chitosan hydrogels by construction of a nanofibrous and cellular architecture in the hydrogel without toxic chemical crosslinking. To this end, electrospun nanofibers including cellulose acetate, polyacrylonitrile, and SiO2 nanofibers were introduced into chitosan hydrogels by homogenous dispersion and lyophilization. With the addition of 30% cellulose acetate nanofibers, the cellular structure could be maintained even in water without crosslinking, and integration of 60% of the nanofibers could guarantee the free-standing structure of the chitosan hydrogel with a low solid content of 1%. Moreover, the SiO2 nanofiber-reinforced chitosan (SiO2 NF/CS) three-dimensional (3D) matrices exhibit complete shape recovery from 80% compressive strain and excellent injectability. The cellular architecture and nanofibrous structure in the SiO2 NF/CS matrices are beneficial for human mesenchymal stem cell adhesion and stretching. Furthermore, the SiO2 NF/CS matrices can also act as powerful vehicles for drug delivery. As an example, bone morphogenetic protein 2 could be immobilized on SiO2 NF/CS matrices to induce osteogenic differentiation. Together, the electrospun nanofiber-reinforced 3D chitosan matrices exhibited improved mechanical properties and enhanced biofunctionality, showing great potential in tissue engineering.