Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 4(10): e00831, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30294686

RESUMO

[This corrects the article DOI: 10.1016/j.heliyon.2018.e00603.].

2.
Heliyon ; 4(4): e00603, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29736430

RESUMO

U.S. President John F. Kennedy was assassinated while riding in an open motorcade by a sniper in Dallas, Texas on 22 November 1963. A civilian bystander, Mr. Abraham Zapruder, filmed the motorcade with a 8-mm home movie camera as it drove through Dealey Plaza, inadvertently recording an ≈8 second sequence of events that included a fatal gunshot wound to the President in the head. The accompanying backward motion of the President's head after impact appeared to support later "conspiracy theories" because it was claimed that this was proof of a shot from the front (in addition to one from behind). In this paper, simple one-dimensional dynamical models are uniquely applied to study in detail the fatal shot and the motion of the President's head observed in the film. Using known parameters from the crime scene, explicit force calculations are carried out for determining the projectile's retardation during tissue passage along with the resulting transfer of momentum and kinetic energy (KE). The computed instantaneous KE transfer within the soft tissue is found to be consistent with the formation of a temporary cavity associated with the observed explosion of the head, and subsequent quantitative examination of this phenomenon reveals two delayed forces at play in the backward motion of the President following impact. It is therefore found that the observed motions of President Kennedy in the film are physically consistent with a high-speed projectile impact from the rear of the motorcade, these resulting from an instantaneous forward impulse force, followed by delayed rearward recoil and neuromuscular forces.

3.
Appl Opt ; 47(25): 4649-71, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18758537

RESUMO

The surface-leaving radiance model developed in Part I [Appl. Opt.47,3701 (2008)] is validated against an exhaustive set of Fourier transform spectrometer field observations acquired at sea. Unlike prior limited studies, these data include varying all-sky atmospheric conditions (clear, cloudy, and dusty), with regional samples from the tropics, mid-latitudes, and high latitudes. Our analyses show the model to have reduced bias over standard models at emission angles > or = 45 degrees.

4.
Appl Opt ; 47(21): 3701-21, 2008 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-18641735

RESUMO

Although published sea surface infrared (IR) emissivity models have gained widespread acceptance for remote sensing applications, discrepancies have been identified against field observations obtained from IR Fourier transform spectrometers at view angles approximately > 40 degrees. We therefore propose, in this two-part paper, an alternative approach for calculating surface-leaving IR radiance that treats both emissivity and atmospheric reflection in a systematic yet practical manner. This first part presents the theoretical basis, development, and computations of the proposed model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA