Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 177: 216-227, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38253303

RESUMO

The effects of helical flow in a blood vessel are investigated in a dynamic flow generator using surface acoustic wave (SAW) in the microfluidic device. The SAW, generated by an interdigital transducer (IDT), induces acoustic streaming, resulting in a stable and consistent helical flow pattern in microscale channels. This approach allows rapid development of helical flow within the channel without directly contacting the medium. The precise design of the window enables the creation of distinct unidirectional vortices, which can be controlled by adjusting the amplitude of the SAW. Within this device, optimal operational parameters of the dynamic flow generator to preserve the integrity of endothelial cells are found, and in such settings, the actin filaments within the cells are aligned to the desired state. Our findings reveal that intracellular Ca2+ concentrations vary in response to flow conditions. Specifically, comparable maximum intensity and graphical patterns were observed between low-flow rate helical flow and high-flow rate Hagen-Poiseuille flow. These suggest that the cells respond to the helical flow through mechanosensitive ion channels. Finally, adherence of monocytes is effectively reduced under helical flow conditions in an inflammatory environment, highlighting the atheroprotective role of helical flow. STATEMENT OF SIGNIFICANCE: Helical flow in blood vessels is well known to prevent atherosclerosis. However, despite efforts to replicate helical flow in microscale channels, there is still a lack of in vitro models which can generate helical flow for analyzing its effects on the vascular system. In this study, we developed a method for generating steady and constant helical flow in microfluidic channel using acoustofluidic techniques. By utilizing this dynamic flow generator, we were able to observe the atheroprotective aspects of helical flow in vitro, including the enhancement of calcium ion flux and reduction of monocyte adhesion. This study paves the way for an in vitro model of dynamic cell culture and offers advanced investigation into helical flow in our circulatory system.


Assuntos
Aterosclerose , Células Endoteliais , Humanos , Acústica , Microfluídica , Dispositivos Lab-On-A-Chip
2.
Lab Chip ; 23(18): 4117-4125, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37655531

RESUMO

The lysis of cancer cells inside a sessile droplet was performed using traveling surface acoustic waves (SAWs) without any chemical reagents. Raman spectrum profiling was then carried out to explore detailed cell-derived data. The Rayleigh waves formed by an interdigital transducer were made to propagate along the surface of an LiNbO3 substrate. Polystyrene microparticles (PSMPs) were used to establish mechanical cell lysis effectively, and gold nanoparticles (AuNPs) were added to enhance the Raman signals from the lysed cells by SAWs. The lysis efficiency was evaluated according to the size and concentration of the PSMPs in experiments where the frequency was varied. Lysis occurred mainly by mechanical collision using PSMPs in a high-frequency domain, and the lysis efficiency was improved by increasing the application time and the energy density of the SAWs. Raman signals from the lysed cells were greatly enhanced by nanogaps formed by the AuNPs, which were evenly distributed irrespective of the SAWs through the frequency-independent behavior of the AuNPs. Finally, detailed Raman spectra of MDA-MB-231, malignant breast cancer cells, were acquired, and various organic matter-derived peaks were observed. The 95% confidence region for cells subjected to lysis was more widely distributed than that of cells not subjected to lysis. The proposed SAW platform is expected to facilitate the detection of small quantities and to be applied in biomedical applications.


Assuntos
Micropartículas Derivadas de Células , Nanopartículas Metálicas , Neoplasias , Ouro , Morte Celular , Poliestirenos
3.
Adv Sci (Weinh) ; 9(16): 2105809, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35686137

RESUMO

The cytotoxic response of natural killer (NK) cells in a microreactor to surface acoustic waves (SAWs) is investigated, where the SAWs produce an acoustic streaming flow. The Rayleigh-type SAWs form by an interdigital transducer propagated along the surface of a piezoelectric substrate in order to allow the dynamic stimulation of functional immune cells in a noncontact and rotor-free manner. The developed acoustofluidic microreactor enables a dynamic cell culture to be set up in a miniaturized system while maintaining the performance of agitating media. The present SAW system creates acoustic streaming flow in the cylindrical microreactor and applies flow-induced shear stress to the cells. The suspended NK cells are found to not be damaged by the SAW operation of the adjusted experimental setup. Suspended NK cell aggregates subjected to an SAW treatment show increased intracellular Ca2+ concentrations. Simultaneously treating the NK cells with SAWs and protein kinase C activator enhances the lysosomal protein expressions of the cells and the cell-mediated cytotoxicity against target tumor cells. These have important implications by showing that acoustically actuated system allows dynamic cell culture without cell damages and further alters cytotoxicity-related cellular activities.


Assuntos
Acústica , Som , Contagem de Células , Técnicas de Cultura de Células , Transdutores
4.
Lab Chip ; 22(1): 47-56, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34821225

RESUMO

The behaviours of microparticles inside a sessile droplet actuated by surface acoustic waves (SAWs) were investigated, where the SAWs produced an acoustic streaming flow and imparted an acoustic radiation force on the microparticles. The Rayleigh waves formed by a comb-like interdigital transducer were made to propagate along the surface of a LiNbO3 substrate in order to allow the manipulation of microparticles in a label-free and non-contact manner. Polystyrene microparticles were first employed to describe the behaviours inside a sessile droplet. The influence of the volume of the sessile droplet on the behaviours of the microparticles was examined by changing the contact angle of the droplet. Next, cancer cells were suspended in a sessile droplet, and the influence of contact angle on the behaviours of the cancer cells was investigated. A long gelation time was afforded by using a PEGylated fibrin gel. A primary tumour was mimicked by patterning the cancer cells to be concentrated in the middle of the sessile droplet. The non-contact manipulation property of acoustic waves was indicated to be biocompatible and enabled a structure-free platform configuration. Three-dimensional aggregated culture models were observed to make the cancer cells display an elevated expression of E-cadherin. The efficacy of the anticancer drug tirapazamine increased in the aggregated cancer cells, attributed to the low levels of oxygen in this formation of cancer cells.


Assuntos
Neoplasias , Som , Acústica , Poliestirenos , Transdutores
5.
Sci Rep ; 11(1): 2262, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500481

RESUMO

As silver nanowires (Ag NWs) are usually manufactured by chemical synthesis, a patterning process is needed to use them as functional devices. Pulsed laser ablation is a promising Ag NW patterning process because it is a simple and inexpensive procedure. However, this process has a disadvantage in that target materials are wasted owing to the subtractive nature of the process involving the removal of unnecessary materials, and large quantities of raw materials are required. In this study, we report a minimum-waste laser patterning process utilizing silver nanoparticle (Ag NP) debris obtained through laser ablation of Ag NWs in liquid media. Since the generated Ag NPs can be used for several applications, wastage of Ag NWs, which is inevitable in conventional laser patterning processes, is dramatically reduced. In addition, electrophoretic deposition of the recycled Ag NPs onto non-ablated Ag NWs allows easy fabrication of junction-enhanced Ag NWs from the deposited Ag NPs. The unique advantage of this method lies in using recycled Ag NPs as building materials, eliminating the additional cost of junction welding Ag NWs. These fabricated Ag NW substrates could be utilized as transparent heaters and stretchable TCEs, thereby validating the effectiveness of the proposed process.

6.
Sensors (Basel) ; 20(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906807

RESUMO

The analysis of circulating tumor cells (CTCs) in the peripheral blood of cancer patients is critical in clinical research for further investigation of tumor progression and metastasis. In this study, we present a novel surface-enhanced Raman scattering (SERS) substrate for the efficient capture and characterization of cancer cells using silver nanoparticles-reduced graphene oxide (AgNPs-rGO) composites. A pulsed laser reduction of silver nanowire-graphene oxide (AgNW-GO) mixture films induces hot-spot formations among AgNPs and artificial biointerfaces consisting of rGOs. We also use in situ electric field-assisted fabrication methods to enhance the roughness of the SERS substrate. The AgNW-GO mixture films, well suited for the proposed process due to its inherent electrophoretic motion, is adjusted between indium tin oxide (ITO) transparent electrodes and the nano-undulated surface is generated by applying direct-current (DC) electric fields during the laser process. As a result, MCF7 breast cancer cells are efficiently captured on the AgNPs-rGO substrates, about four times higher than the AgNWs-GO films, and the captured living cells are successfully analyzed by SERS spectroscopy. Our newly designed bifunctional substrate can be applied as an effective system for the capture and characterization of CTCs.


Assuntos
Nanopartículas Metálicas , Células Neoplásicas Circulantes , Análise Espectral Raman , Técnicas Biossensoriais , Grafite , Humanos , Prata
7.
Biomicrofluidics ; 14(4): 044107, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32742536

RESUMO

Cancer metastasis, which is prevalent in malignant tumors, is present in a variety of cases depending on the primary tumor and metastatic site. The cancer metastasis is affected by various factors that surround and constitute a tumor microenvironment. One of the several factors, oxygen tension, can affect cancer cells and induce changes in many ways, including motility, directionality, and viability. In particular, the oxygen tension gradient is formed within a tumor cluster and oxygen is lower toward the center of the cluster from the perivascular area. The simple and efficient designing of the tumor microenvironment using microfluidic devices enables the simplified and robust platform of the complex in vivo microenvironment while observing a clear cause-and-effect between the properties of cancer cells under oxygen tension. Here, a microfluidic device with five channels including a gel channel, media channels, and gas channels is designed. MDA-MB-231cells are seeded in the microfluidic device with hydrogel to simulate their three-dimensional movement in the body. The motility and directionality of the cancer cells under the normoxic and oxygen tension gradient conditions are compared. Also, the viability of the cancer cells is analyzed for each condition when anticancer drugs are applied. Unlike the normoxic condition, under the oxygen tension gradient, cancer cells showed directionality toward higher oxygen tension and decreased viability against the certain anticancer drug. The simplified design of the tumor microenvironment through microfluidic devices enables comprehension of the response of cancer cells to varying oxygen tensions and cancer drugs in the hypoxic tumor microenvironment.

8.
Biophys J ; 115(10): 2034-2043, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30366624

RESUMO

Chemotaxis, a biased migration of cells under a chemical gradient, plays a significant role in diverse biological phenomena including cancer metastasis. Stromal cells release signaling proteins to induce chemotaxis, which leads to organ-specific metastasis. Epidermal growth factor (EGF) is an example of the chemical attractants, and its gradient stimulates metastasis of breast cancer cells. Hence, the interactions between EGF and breast cancer cells have long been a subject of interest for oncologists and clinicians. However, most current approaches do not systematically separate the effects of gradient and absolute concentration of EGF on chemotaxis of breast cancer cells. In this work, we develop a theoretical model based on signal/noise ratio to represent stochastic properties and report our microfluidic experiments to verify the analytical predictions from the model. The results demonstrate that even under the same EGF concentration gradients (0-50 or 0-150 ng/mL), breast cancer cells reveal a more evident chemotaxis pattern when the absolute EGF concentrations are low. Moreover, we found that reducing the number of EGF receptors (EGFRs) with addition of EGFR antibody (1 ng/mL) can promote chemotaxis at an EGF gradient of 0-1 ng/mL as shown by chemotaxis index (0.121 ± 0.037, reduced EGFRs vs. 0.003 ± 0.041, control). This counterintuitive finding suggests that EGFR-targeted therapy may stimulate metastasis of breast cancer because the partial suppression of the receptors makes the number of receptors close to the optimal one for chemotaxis. This analysis should be considered in anticancer drug design.


Assuntos
Neoplasias da Mama/patologia , Quimiotaxia , Modelos Biológicos , Linhagem Celular Tumoral , Quimiotaxia/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Humanos , Dispositivos Lab-On-A-Chip , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA