Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(20): 14012-14021, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38738871

RESUMO

Plasmonic nanoparticles with an externally open nanogap can localize the electromagnetic (EM) field inside the gap and directly detect the target via the open nanogap with surface-enhanced Raman scattering (SERS). It would be beneficial to design and synthesize the open gap nanoprobes in a high yield for obtaining uniform and quantitative signals from randomly oriented nanoparticles and utilizing these particles for direct SERS analysis. Here, we report a facile strategy to synthesize open cross-gap (X-gap) nanocubes (OXNCs) with size- and EM field-tunable gaps in a high yield. The site-specific growth of Au budding structures at the corners of the AuNC using the principle that the Au deposition rate is faster than the surface diffusion rate of the adatoms allows for a uniform X-gap formation. The average SERS enhancement factor (EF) for the OXNCs with 2.6 nm X-gaps was 1.2 × 109, and the EFs were narrowly distributed within 1 order of magnitude for ∼93% of the measured OXNCs. OXNCs consistently displayed strong EM field enhancement on large particle surfaces for widely varying incident light polarization directions, and this can be attributed to the symmetric X-gap geometry and the availability of these gaps on all 6 faces of a cube. Finally, the OXNC probes with varying X-gap sizes have been utilized in directly detecting biomolecules with varying sizes without Raman dyes. The concept, synthetic method, and biosensing results shown here with OXNCs pave the way for designing, synthesizing, and utilizing plasmonic nanoparticles for selective, quantitative molecular-fingerprint Raman sensing and imaging applications.

2.
J Am Chem Soc ; 146(15): 10591-10598, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38570931

RESUMO

Ag nanoparticles have garnered significant attention for their excellent plasmonic properties and potential use as plasmonic cavities, primarily because of their intrinsically low ohmic losses and optical properties in the visible range. These are particularly crucial in systems involving quantum dots that absorb light at low wavelengths, where the need for a high threshold energy of interband transitions necessitates the incorporation of Ag nanostructures. However, the synthesis of Ag nanoparticles still encounters challenges in achieving structural uniformity and monodispersity, along with chemical stability, consequentially inducing inconsistent and poorly reliable optical responses. Here, we present a two-step approach for synthesizing highly uniform spherical Ag nanoparticles involving depletion-induced flocculation and Cu(II)-mediated oxidative etching. We found that the selective flocculation of multitwinned Ag nanocrystals significantly enhances the uniformity of the resulting Ag nanostructures, leaving behind only single-crystalline and single-twinned nanostructures. Subsequent oxidative etching, in which cupric ions are directly involved in the reaction, was designed based on Pourbaix diagrams to proceed following thermodynamically favorable states and circumvent the generation of reactive chemical species such as H2O2. This leads to perfectly spherical shapes of final Ag nanoparticles with a synthetic yield of 99.5% and additionally reduces the overall reaction time. Furthermore, we explore the potential applications of these monodisperse Ag nanospheres as uniform plasmonic cavities. The fabricated Ag nanosphere films uniformly enhanced the photoluminescence of InP/ZnSe/ZnS quantum dots, showcasing their capabilities in exhibiting consistent plasmonic responses across a large area.

3.
Adv Mater ; 36(5): e2305394, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37643367

RESUMO

Lysosomes are critical in modulating the progression and metastasis for various cancers. There is currently an unmet need for lysosomal alkalizers that can selectively and safely alter the pH and inhibit the function of cancer lysosomes. Here an effective, selective, and safe lysosomal alkalizer is reported that can inhibit autophagy and suppress tumors in mice. The lysosomal alkalizer consists of an iron oxide core that generates hydroxyl radicals (•OH) in the presence of excessive H+ and hydrogen peroxide inside cancer lysosomes and cerium oxide satellites that capture and convert •OH into hydroxide ions. Alkalized lysosomes, which display impaired enzyme activity and autophagy, lead to cancer cell apoptosis. It is shown that the alkalizer effectively inhibits both local and systemic tumor growth and metastasis in mice. This work demonstrates that the intrinsic properties of nanoparticles can be harnessed to build effective lysosomal alkalizers that are both selective and safe.


Assuntos
Nanopartículas , Neoplasias , Camundongos , Animais , Lisossomos , Nanopartículas/química , Apoptose , Autofagia
5.
Acc Chem Res ; 56(16): 2139-2150, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37522593

RESUMO

ConspectusPlasmonic metal nanostructures have been extensively developed over the past few decades because of their ability to confine light within the surfaces and manipulate strong light-matter interactions. The light energy stored by plasmonic nanomaterials in the form of surface plasmons can be utilized to initiate chemical reactions, so-called plasmon-induced catalysis, which stresses the importance of understanding the surface chemistry of the plasmonic materials. Nevertheless, only physical interpretation of plasmonic behaviors has been a dominant theme, largely excluding chemical intuitions that facilitate understanding of plasmonic systems from molecular perspectives. To overcome and address the lack of this complementary understanding based on molecular viewpoints, in this Account we provide a new concept encompassing the well-developed physics of plasmonics and the corresponding surface chemistry while reviewing and discussing related references. Inspired by Roald Hoffmann's descriptions of solid-state surfaces based on the molecular orbital picture, we treat molecular interfaces of plasmonic metal nanostructures as a series of metal-ligand complexes. Accordingly, the effects of the surface ligands can be described by bisecting them into electronic and steric contributions to the systems. By exploration of the quality of orbital overlaps and the symmetry of the plasmonic systems, electronic effects of surface ligands on localized surface plasmon resonances (LSPRs), surface diffusion rates, and hot-carrier transfer mechanisms are investigated. Specifically, the propensity of ligands to donate electrons in a σ-bonding manner can change the LSPR by shifting the density of states near the Fermi level, whereas other types of ligands donating or accepting electrons in a π-bonding manner modulate surface diffusion rates by affecting the metal-metal bond strength. In addition, the formation of metal-ligand bonds facilitates direct hot-carrier transfer by forming a sort of molecular orbital between a plasmonic structure and ligands. Furthermore, effects of steric environments are discussed in terms of ligand-ligand and ligand-surface nonbonding interactions. The steric hindrance allows for controlling the accessibility of the surrounding chemical species toward the metal surface by modulating the packing density of ligands and generating repulsive interactions with the surface atoms. This unconventional approach of considering the plasmonic system as a delocalized molecular entity could establish a basis for integrating chemical intuition with physical phenomena. Our chemist's outlook on a molecular interface of the plasmonic surface can provide insights and avenues for the design and development of more exquisite plasmonic catalysts with regio- and enantioselectivities as well as advanced sensors with unprecedented chemical controllability and specificity.

6.
Small Methods ; 7(7): e2300034, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37189215

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the global coronavirus disease 2019 (COVID-19) pandemic, has caused well over 750 million infections and 6.8 million deaths. Rapid diagnosis and isolation of infected patients are the primary aims of the concerned authorities to minimize the casualties. The endeavor to mitigate the pandemic has been impeded by the emergence of newly identified genomic variants of SARS-CoV-2. Some of these variants are considered as serious threats because of their higher transmissibility and potential immune evasion, leading to reduced vaccine efficiency. Nanotechnology can play an important role in advancing both diagnosis and therapy of COVID-19. In this review, nanotechnology-based diagnostic and therapeutic strategies against SARS-CoV-2 and its variants are introduced. The biological features and functions of the virus, the mechanism of infection, and currently used approaches for diagnosis, vaccination, and therapy are discussed. Then, nanomaterial-based nucleic acid- and antigen-targeting diagnostic methods and viral activity suppression approaches that have a strong potential to advance both diagnostics and therapeutics toward control and containment of the COVID-19 pandemic are focused upon.


Assuntos
COVID-19 , Nanoestruturas , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/terapia , Pandemias/prevenção & controle , Nanotecnologia , Teste para COVID-19
7.
Nano Lett ; 23(9): 3897-3903, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37083438

RESUMO

Simple, low-cost, and accurate nucleic acid assay platforms hold great promise for point-of-care (POC) pathogen detection, disease surveillance, and control. Plasmonic photothermal polymerase chain reaction (PPT-PCR) is a powerful and efficient nucleic acid amplification technique, but it lacks a simple and convenient analysis method for POC applications. Herein, we propose a novel plasmonic cross-linking colorimetric PCR (PPT-ccPCR) assay by integrating plasmonic magnetic nanoparticle (PMN)-based PPT-PCR with gold nanoparticle (AuNP)-based cross-linking colorimetry. AuNPs form assembled structures with the PMNs in the presence of amplicons and collect in a magnetic field, resulting in color changes to the supernatant. Target DNA with concentrations as low as 5 copies/µL can be visually detected within 40 min. The achieved limit of detection was 1.8 copies/µL based on the absorption signals. This simple and sensitive strategy needs no expensive instrumentation and demonstrates high potential for POC detection while enabling further applications in clinical diagnostics.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Colorimetria/métodos , Ouro/química , Nanopartículas Metálicas/química , DNA/química , Reação em Cadeia da Polimerase , Técnicas de Amplificação de Ácido Nucleico/métodos
8.
Chem Commun (Camb) ; 59(17): 2352-2380, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36727288

RESUMO

Plasmonic metal nanoparticles and semiconductor quantum dots (QDs) are two of the most widely applied nanomaterials for optical biosensing and bioimaging. While their combination for fluorescence quenching via nanosurface energy transfer (NSET) or Förster resonance energy transfer (FRET) offers powerful ways of tuning and amplifying optical signals and is relatively common, metal-QD nanohybrids for plasmon-enhanced fluorescence (PEF) have been much less prevalent. A major reason is the competition between fluorescence quenching and enhancement, which poses important challenges for optimizing distances, orientations, and spectral overlap toward maximum PEF. In this feature article, we discuss the interplay of the different quenching and enhancement mechanisms (a mixed distance dependence of quenching and enhancement - "quenchancement") to better understand the obstacles that must be overcome for the development of metal-QD nanohybrid-based PEF biosensors. The different nanomaterials, their combination within various surface and solution based design concepts, and their structural and photophysical characterization are reviewed and applications toward advanced optical biosensing and bioimaging are presented along with guidelines and future perspectives for sensitive, selective, and versatile bioanalytical research and biomolecular diagnostics with metal-QD nanohybrids.


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Semicondutores , Transferência Ressonante de Energia de Fluorescência/métodos , Metais , Técnicas Biossensoriais/métodos
9.
Adv Mater ; 35(15): e2208250, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36680474

RESUMO

Metal nanostructures with a tunable plasmonic gap are useful for photonics, surface-enhanced spectroscopy, biosensing, and bioimaging applications. The use of these structures as chemical and biological sensing/imaging probes typically requires an ultra-precise synthesis of the targeted nanostructure in a high yield, with Raman dye-labeling and complex assay components and procedures. Here, a plasmonic nanostructure with tunable dual nanogaps, Au dual-gap nanodumbbells (AuDGNs), is designed and synthesized via the anisotropic adsorption of polyethyleneimine on Au nanorods to facilitate tip-selective Au growths on nanorod tips for forming mushroom-shaped dumbbell-head structures at both tips and results in dual gaps (intra-head and inter-head gaps) within a single particle. AuDGNs are synthesized in a high yield (>90%) while controlling the inter-head gap size, and the average surface-enhanced Raman scattering (SERS) enhancement factor (EF) value is 7.5 × 108 with a very narrow EF distribution from 1.5 × 108 to 1.5 × 109 for >90% of analyzed particles. Importantly, AuDGNs enable label-free on-particle SERS detection assays through the diffusion of target molecules into the intraparticle gap for different DNA sequences with varying ATGC combinations in a highly specific and sensitive manner without a need for Raman dyes.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Nanotubos , Nanopartículas Metálicas/química , Ouro/química , Nanoestruturas/química , DNA/química , Análise Espectral Raman/métodos
10.
Small ; 19(7): e2205956, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36464657

RESUMO

Rational design of plasmonic colloidal assemblies via bottom-up synthesis is challenging but would show unprecedented optical properties that strongly relate to the assembly's shape and spatial arrangement. Herein, the synthesis of plasmonic cyclic Au nanosphere hexamers (PCHs) is reported, wherein six Au nanospheres (Au NSs) are connected via thin metal ligaments. By tuning Au reduction, six dangling Au NSs are interconnected with a core hexagon nanoplate (NPL). Then, Pt atoms are selectively deposited on the edges of the spheres. After etching of the core, necklace-like nanostructures of Pt framework are obtained. Deposition of Au is followed, leading to PCHs in high yield (≈90%). Notably, PCHs exhibit the combinatorial plasmonic characteristics of individual Au NSs and the in-plane coupling of the six linked Au NSs. They yield highly uniform, reproducible, and polarization-independent single-particle surface-enhanced Raman scattering signals, which are attributed to the 2-dimensional isotropic alignment of the Au NSs. Those are applied to a SERS-based immunoassay as quantitative and qualitative single particle SERS nanoprobes. This assay shows a low limit-of-detection, down to 100 pm, which is orders of magnitude lower than those based on Au NSs, and one order of magnitude lower than an assay using analogous particles of smooth Au nanorings.

11.
J Am Chem Soc ; 144(49): 22337-22351, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36473154

RESUMO

Surface-enhanced Raman scattering (SERS) provides significantly enhanced Raman scattering signals from molecules adsorbed on plasmonic nanostructures, as well as the molecules' vibrational fingerprints. Plasmonic nanoparticle systems are particularly powerful for SERS substrates as they provide a wide range of structural features and plasmonic couplings to boost the enhancement, often up to >108-1010. Nevertheless, nanoparticle-based SERS is not widely utilized as a means for reliable quantitative measurement of molecules largely due to limited controllability, uniformity, and scalability of plasmonic nanoparticles, poor molecular modification chemistry, and a lack of widely used analytical protocols for SERS. Furthermore, multiscale issues with plasmonic nanoparticle systems that range from atomic and molecular scales to assembled nanostructure scale are difficult to simultaneously control, analyze, and address. In this perspective, we introduce and discuss the design principles and key issues in preparing SERS nanoparticle substrates and the recent studies on the uniform and controllable synthesis and newly emerging machine learning-based analysis of plasmonic nanoparticle systems for quantitative SERS. Specifically, the multiscale point of view with plasmonic nanoparticle systems toward quantitative SERS is provided throughout this perspective. Furthermore, issues with correctly estimating and comparing SERS enhancement factors are discussed, and newly emerging statistical and artificial intelligence approaches for analyzing complex SERS systems are introduced and scrutinized to address challenges that cannot be fully resolved through synthetic improvements.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Análise Espectral Raman/métodos , Nanopartículas Metálicas/química , Inteligência Artificial
13.
ACS Nano ; 16(7): 11259-11267, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35834780

RESUMO

We report a synthetic approach for heterometallic (Au-Pt-Au) nanorings with intertwined triple rings (NITs), wherein three differently sized metal circular nanorings concentrically overlap in a single entity. The synthetic method allows one to control the component of core nanorings (Au or Pt) with a tunable gap distance. The narrow circular nanogaps between inner and outer Au rings strongly enhance the electromagnetic near-field via intraparticle coupling of localized surface plasmon resonance, which realizes surface-enhanced Raman scattering (SERS) at the single-particle level. Importantly, when the component of the middle ring is Pt, in situ SERS measurement for electrochemical reactions on Pt domains could be monitored with electrochemical potential variations due to the near-field focusing that is assisted by plasmonically active inner and outer Au nanorings, which is not feasible with pure Pt nanoparticle systems. The resulting NIT systems are robust and may benefit the synthesis of complicated nanostructures, giving myriad applications.

14.
Nano Lett ; 22(4): 1734-1740, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138110

RESUMO

The development of a stepwise synthetic strategy for Au ring-in-a-triangle nanoframes with a high degree of structural solidity is essential to the advancement of highly amplified near-field focusing. This strategy leads to the formation of an inscribed nanoring in a triangular metal frame with stability to withstand elevated temperatures and an oxidizing environment, which is critical for successful single-particle surface-enhanced Raman scattering (SERS). The existence of inscribed nanorings plays an important role in enhancing the so-called "lightning rod effect," whereby the electromagnetic near-field enhancement occurs on the highly curved curvature of a metallic interface. We evaluated the corresponding single-particle SERS as a function of the thickness of the rims and then constructed two-dimensional (2D) bulk SERS substrates, wherein an ensemble of hotspots exists. The synergic contribution from both inter- and intrahotspots allowed the outstanding linearity of the calibration curve and the lowest limit of detection, ∼10-18 M for the analyte concentration.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos
15.
Small ; 18(8): e2105538, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923738

RESUMO

Single nucleotide polymorphisms (SNPs) that can alter phenotypes of individuals play a pivotal role in disease development and, more importantly, responses to therapy. However, SNP genotyping has been challenging due to the similarity of SNP alleles and their low concentration in biological samples. Sequence-specific nanoparticle with interpretative toehold-mediated sequence decoding in hydrogel (SWITCH) for multiplex SNP genotyping is presented. The encoding with gold nanoparticle probes transduces each SNP target to ≈1000 invaders with prominently different sequences between wild and mutant types, featuring polymerase chain reaction (PCR)-free amplification. Subsequently, the toehold-mediated DNA replacement in hydrogel microparticles decodes the invaders via SNP-specific fluorescence signals. The 4-plex detection of the warfarin-associated SNP targets spiked in commercially validated human serum (S1-100ML, Merck) is successfully demonstrated with excellent specificity. This work is the first technology development presenting PCR-free, multiplex SNP genotyping with a single reporting fluorophore, to the best of knowledge.


Assuntos
Ouro , Nanopartículas Metálicas , Alelos , Genótipo , Hidrogéis , Polimorfismo de Nucleotídeo Único
16.
ACS Nano ; 15(12): 19853-19863, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34807582

RESUMO

Direct photoluminescence (PL) from metal nanoparticles (NPs) without chemical dyes is promising for sensing and imaging applications since this offers a highly tunable platform for controlling and enhancing the signals in various conditions and does not suffer from photobleaching or photoblinking. It is, however, difficult to synthesize metal NPs with a high quantum yield (QY), particularly in the near-infrared (NIR) region where deep penetration and reduced light scattering are advantageous for bioimaging. Herein, we designed and synthesized Au-Ag long-body nanosnowman structures (LNSs), facilitated by polysorbate 20 (Tween 20). The DNA-engineered conductive junction between the head and body parts results in a charge transfer plasmon (CTP) mode in the NIR region. The junction morphology can be controlled by the DNA sequence on the Au core, and polythymine and polyadenine induced thick and thin junctions, respectively. We found that the LNSs with a thicker conductive junction generates the stronger CTP peak and PL signal than the LNSs with a thinner junction. The Au-Ag LNSs showed much higher intensities in both PL and QY than widely studied Au nanorods with similar localized surface plasmon resonance wavelengths, and notably, the LNSs displayed high photostability and robust, sustainable PL signals under continuous laser exposure for >15 h. Moreover, the PL emission from Au-Ag LNSs could be imaged in a deeper scattering medium than fluorescent silica NPs. Finally, highly robust PL-based cell images can be obtained using Au-Ag LNSs without significant signal change while repetitively imaging cells. The results offer the insights in plasmonic NIR probe design, and show that chemical dye-free LNSs can be a very promising candidate with a high QY and a robust, reliable NIR PL signal for NIR sensing and imaging applications.


Assuntos
Nanopartículas Metálicas , Nanotubos , Ouro , Polissorbatos , Ressonância de Plasmônio de Superfície
17.
Adv Mater ; 33(46): e2107344, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34780119
18.
Nano Lett ; 21(18): 7512-7518, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34491741

RESUMO

Plasmonic electrochromism, a change in the localized surface plasmon resonance (LSPR) with an applied electric potential, has been attracting increasing attention for the development of spectroscopic tools or optoelectronic systems. There is a consensus on the mechanism of plasmonic electrochromism based on the classical capacitor and the Drude model. However, the electrochromic behaviors of metallic nanoparticles in narrow optical windows have been demonstrated only with small monotonic LSPR shifts, which limits the use of the electrochromism. Here, we observed three distinct electrochromic behaviors of gold nanocubes with a wide potential range through in situ dark-field electrospectroscopy. Interestingly, the nanocubes show a faster frequency shift under the highly negative potential, and this opens the possibility of largely tunable electrochromic LSPR shifts. The reversibility of the electrochemical switching with these cubes are also shown. We attribute this unexpected change beyond classical understandings to the material-specific quantum mechanical electronic structures of the plasmonic materials.

19.
Chem Commun (Camb) ; 57(81): 10616-10619, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34570133

RESUMO

We report the synthetic methodology for silver nanorings with controlled nanoscale morphology. The morphology of Ag nanorings was kinetically controlled by electrochemical potential tuning of Ag deposition using halide counter-ions, which resulted in concentric PtAu@Ag nanorings (i.e., Ag homogeneously wrapped around the Pt nanorings) and eccentric PtAu@Ag nanorings (i.e., Ag selectively deposited at the inner boundary of the Pt nanorings). The resulting high quality of each Ag nanoring allowed us to systematically investigate their corresponding localized surface plasmon resonance (LSPR) profiles as a function of their geometrical parameters. Additionally, we evaluated the application of the samples as surface-enhanced Raman spectroscopy (SERS) substrates composed of 2D monolayers of varied compositions of Ag and Au nanorings, which showed a different extent of enhancement depending on the adsorption characteristics of the analytes.

20.
J Am Chem Soc ; 143(37): 15113-15119, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34369765

RESUMO

We designed complex Au nanorings with intertwined triple rings (ANITs) in a single entity to amplify the efficacy of near-field focusing. Such a complex and unprecedented morphology at the nanoscale was realized through on-demand multistepwise reactions. Triangular nanoprisms were first sculpted into circular nanorings, followed by a series of chemical etching and deposition reactions eventually leading to ANITs wherein thin metal bridges hold the structure together without any linker molecules. In the multistepwise reaction, the well-faceted growth pattern of Au, which induces the growth of two distinctive flat facets in a lateral direction, is important to evolve the morphology from single to multiple nanorings. Although our synthesis proceeds through multiple steps in one batch without purification steps, it shows a remarkably high yield (>∼90%) at the final stage. The obtained high degree of homogeneity (in both shape and size) of the resulting ANITs allowed us to systematically investigate the corresponding localized surface plasmon resonance (LSPR) coupling with varying nanoring arrangements and observe their single-particle surface enhanced Raman scattering (SERS). Surprisingly, individual ANITs exhibited an enormously large enhancement factor (∼109), which confirms their superior near-field focusing relative to other reported nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA