Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(2): 2417-2423, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31856562

RESUMO

Tin oxide (SnO2) is widely adopted as an electron transport layer in perovskite solar cells (PeSCs) because it has high electron mobility, excellent charge selective behavior owing to a large band gap of 3.76 eV, and low-temperature processibility. To achieve highly efficient SnO2-based PeSCs, it is necessary to control the oxygen vacancies in the SnO2 layer, since the electrical and optical properties vary depending on the oxidation state of Sn. This study demonstrates that the performance of PeSCs may be improved by using nitrogen-doped graphene oxide (NGO) as an oxidizing agent for SnO2. Since NGO changes the oxidation state of the Sn in SnO2 from Sn2+ to Sn4+, the oxygen vacancies in SnO2 can be reduced using NGO. Multiple devices are fabricated, and various techniques are used to assess their performance, including X-ray photoelectron spectroscopy, dark current analysis, and the dependence of the open-circuit voltage on light intensity. Compared with the average power conversion efficiency (PCE) of control devices, PeSCs with SnO2:NGO composite layers exhibit greater PCEs with less deviation. Therefore, the introduction of NGO in a SnO2 layer can be regarded as an effective method of controlling the oxidation state of SnO2 to improve the performance of PeSCs.

2.
Adv Sci (Weinh) ; 6(23): 1901603, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31832317

RESUMO

Direct 3D printing technologies to produce 3D optoelectronic architectures have been explored extensively over the last several years. Although commercially available 3D printing techniques are useful for many applications, their limits in printable materials, printing resolutions, or processing temperatures are significant challenges for structural optoelectronics in achieving fully 3D-printed devices on 3D mechanical frames. Herein, the production of active optoelectronic devices with various form factors using a hybrid 3D printing process in ambient air is reported. This hybrid 3D printing system, which combines digital light processing for printing 3D mechanical architectures and a successive electrohydrodynamic jet for directly printing transparent pixels of organic light-emitting diodes at room temperature, can create high-resolution, transparent displays embedded inside arbitrarily shaped, 3D architectures in air. Also, the demonstration of a 3D-printed, eyeglass-type display for a wireless, augmented reality system is an example of another application. These results represent substantial progress in the development of next-generation, freeform optoelectronics.

3.
ACS Appl Mater Interfaces ; 11(42): 39274-39282, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31573174

RESUMO

Metal halide perovskites have been actively studied as promising materials in optoelectronic devices because of their superior optical and electrical properties and have also shown considerable potential for flexible devices because of their good mechanical properties. However, the large hole injection barrier and exciton quenching between the perovskite emitter and poly(3,4-ethylenedioxythiophene):poly-styrene sulfonate (PEDOT:PSS) can lead to the reduction in device efficiency. Here, a nonconductive fluorosurfactant, Zonyl FS-300 (Zonyl), is introduced into the PEDOT:PSS hole transport layer, which reduces the hole injection barrier and exciton quenching at the PEDOT:PSS/perovskite interface. Moreover, a flexible perovskite light-emitting diode with a polymer-silver nanowire composite electrode is demonstrated, showing a maximum current efficiency (CEmax) of 17.90 cd A-1, and this is maintained even after 1000 cycles of bending with a 2.5 mm bending radius.

4.
ACS Appl Mater Interfaces ; 11(23): 21069-21077, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31094197

RESUMO

A novel flexible transparent electrode (TE) having a trilayer-stacked geometry and high optoelectronic performance and operational stability was fabricated by the spin coating method. The trilayer was composed of an ultrathin graphene (Gr) film sandwiched between a transparent and colorless polyimide (TCPI) layer and a methanesulfonic acid (MSA)-treated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) layer containing dimethylsulfoxide and Zonyl fluorosurfactant (designated as MSA-PDZ film). The introduction of solution-processable TCPI enabled the direct formation of high-quality graphene on organic surfaces with a clean interface. Stable doping of graphene with the MSA-PDZ film enabled tuning of the inherent work function and optoelectronic properties of the PEDOT:PSS films, leading to a high figure of merit of ∼70 in the as-fabricated TEs. Particularly, from multivariate and repetitive harsh environmental tests ( T = -50 to 90 °C, over 90 RH%), the TCPI/Gr heterostructure exhibited excellent tolerance to mechanical and thermal stresses and gas barrier properties that protected the MSA-PDZ film from exposure to moisture. Owing to the synergetic effect from the TCPI/Gr/MSA-PDZ anode structure, the TCPI/Gr/MSA-PDZ-based polymer light-emitting diodes showed highly improved current and power efficiencies with maxima as high as 20.84 cd/A and 22.92 lm/W, respectively (comparable to those of indium tin oxide based PLEDs), in addition to much enhanced mechanical flexibility.

5.
ACS Appl Mater Interfaces ; 11(8): 8428-8435, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30714373

RESUMO

Lead halide perovskites (LHPs) are emerging as promising materials for light-emitting device applications because of the tunability of the band gap, narrow emission, solution processability, and flexibility. Typically, LHP nanocrystals (NCs) with surface ligands show high photoluminescence quantum yields because of charge-carrier confinement with higher exciton binding energy ( Eb). However, the conventionally used oleylamine (OAm) ligands result in the low electrical conductivity and stability of perovskite NCs (PNCs) because of a long carbon chain without conjugation bonds and weak interaction with the surface of NCs. Here, we report the effect of bulkiness and chain length of ligand materials on the properties and stability of CsPbBr3 PNCs by replacing OAm with other suitable ligands. The effect of the bulkiness of quaternary ammonium bromide (QAB) ligands was systemically studied. The less bulky QAB ligands surrounded the surface of NCs effectively, and brought better surface passivation and less aggregation compared to bulky QAB ligands, and finally the optical property and stability of CsPbBr3 PNCs were enhanced. Furthermore, the electrical property of CsPbBr3 PNCs was optimized by tuning the long-chain length of QAB ligands for balanced charge-carrier transport. Finally, we achieved highly efficient green emissive CsPbBr3 PNC light-emitting diodes (LEDs) by using PNCs with optimized didecyldimethyl ammonium bromide ligands with a current efficiency of 31.7 cd A-1 and external quantum efficiency of 9.7%, which were enhanced 16-fold compared to those of CsPbBr3 LEDs using PNCs with conventional OAm ligands.

6.
Nano Lett ; 19(2): 971-976, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30608699

RESUMO

Organic-inorganic hybrid perovskites have been investigated extensively for use in perovskite-based solar cells and light-emitting diodes (LEDs) because of their excellent electrical and optical properties. Although the flexibility of perovskite LEDs has been studied through empirical methods such as cyclic bending tests, the flexibility of the perovskite layer has not been investigated systemically. Here, flexible and semitransparent perovskite LEDs are fabricated: a PEDOT:PSS anode and Ag nanowire cathode allow for flexible and semitransparent devices, while the use of a conjugated polyelectrolyte as an interfacial layer reduces the electron injection barrier between the cathode and the electron transport layer (SPW-111), resulting in enhanced device efficiency. Cyclic bending tests performed on the electrodes and in situ hole-nanoindentation tests performed on the constituent materials suggest that mechanical failure occurs in the perovskite MAPbBr3 layer during cyclic bending, leading to a decrease in the luminance. Tensile properties of the MAPbBr3 layer explain the critical bending radius ( rb) of the perovskite LEDs on the order of 1 mm.

7.
Materials (Basel) ; 11(11)2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30400607

RESUMO

Herein, a novel strategy to fabricate haze films employing liquid crystal (LC) technology for photovoltaic (PV) applications is reported. We fabricated a high optical haze film composed of low-molecular LCs and polymer and applied the film to improve the energy conversion efficiency of PV module. The technique utilized to fabricate our haze film is based on spontaneous polymerization-induced phase separation between LCs and polymers. With optimized fabrication conditions, the haze film exhibited an optical haze value over 95% at 550 nm. By simply attaching our haze film onto the front surface of a silicon-based PV module, an overall average enhancement of 2.8% in power conversion efficiency was achieved in comparison with a PV module without our haze film.

8.
Adv Sci (Weinh) ; 5(11): 1801350, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30479940

RESUMO

Metal halide perovskites (MHPs) have emerged as promising materials for light-emitting diodes owing to their narrow emission spectrum and wide range of color tunability. However, the low exciton binding energy in MHPs leads to a competition between the trap-mediated nonradiative recombination and the bimolecular radiative recombination. Here, efficient and stable green emissive perovskite light-emitting diodes (PeLEDs) with an external quantum efficiency of 14.6% are demonstrated through compositional, dimensional, and interfacial modulations of MHPs. The interfacial energetics and optoelectronic properties of the perovskite layer grown on a nickel oxide (NiO x ) and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate hole injection interfaces are investigated. The better interface formed between the NiO x /perovskite layers in terms of lower density of traps/defects, as well as more balanced charge carriers in the perovskite layer leading to high recombination yield of carriers are the main reasons for significantly improved device efficiency, photostability of perovskite, and operational stability of PeLEDs.

9.
ACS Nano ; 12(6): 5826-5833, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29787241

RESUMO

Perovskite-based optoelectronic devices have been rapidly developing in the past 5 years. Since the first report, the external quantum efficiency (EQE) of perovskite light-emitting diodes (PeLEDs) has increased rapidly through the control of morphology and structure from 0.1% to more than 11%. Here, we report the use of various conjugated polyelectrolytes (CPEs) as the hole injection layer in PeLEDs. In particular, we find that poly[2,6-(4,4-bis-potassium butanylsulfonate)-4 H-cyclopenta-[2,1- b;3,4- b']-dithiophene)] (PCPDT-K) transfers holes effectively, blocks electron transport from the perovskite to the underlying ITO layer, and reduces luminescence quenching at the perovskite/PCPDT-K interface. Our optimized PeLEDs with PCPDT-K show enhanced EQE by a factor of approximately 4 compared to control PeLEDs with PEDOT:PSS, reaching EQE values of 5.66%, and exhibit improved device stability.

10.
ACS Nano ; 12(4): 3417-3423, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29561134

RESUMO

Organic-inorganic hybrid perovskites are emerging as promising emitting materials due to their narrow full-width at half-maximum emissions, color tunability, and high photoluminescence quantum yields (PLQYs). However, the thermal generation of free charges at room temperature results in a low radiative recombination rate and an excitation-intensity-dependent PLQY, which is associated with the trap density. Here, we report perovskite films composed of uniform nanosized single crystals (average diameter = 31.7 nm) produced by introducing bulky amine ligands and performing the growth at a lower temperature. By effectively controlling the crystal growth, we maximized the radiative bimolecular recombination yield by reducing the trap density and spatially confining the charges. Finally, highly bright and efficient green emissive perovskite light-emitting diodes that do not suffer from electroluminescence blinking were achieved with a luminance of up to 55 400 cd m-2, current efficiency of 55.2 cd A-1, and external quantum efficiency of 12.1%.

11.
ACS Appl Mater Interfaces ; 8(32): 20938-45, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27463783

RESUMO

Mechanical properties of transparent electrodes, including flexibility, are important in flexible electronics for sustaining electrical conductivity under bending with small radius of curvature. Low contact resistance of junctions in metal nanowire percolation networks is the most important factor to produce electrodes with excellent optical, electrical and mechanical performance. Here, we report the fabrication of welded silver nanowire percolation networks using large pulsed electron beam (LPEB) irradiation as a welding process of silver nanowires (AgNWs). It results in modification of electrical and mechanical properties because of the low contact resistance at welded junctions. Consequently, the flexible and transparent AgNW electrodes fabricated by LPEB irradiation showed lower sheet resistance of 12.63 Ω sq(-1) at high transmittance of 93% (at 550 nm), and superb mechanical flexibility, compared with other AgNW electrodes prepared by thermal treatement and without any treatment. Polymer light-emitting diodes (PLEDs) using AgNWs by LPEB irradiation were fabricated to confirm that the AgNW electrode by LPEB irradiation was able to become alternative to indium tin oxide (ITO) and they showed good device performance as a maximum luminous efficiency of 7.37 cd A(-1), and excellent mechanical flexibility under bending with small radius of curvature.

12.
Adv Mater ; 27(23): 3553-9, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-25946427

RESUMO

The change in the work function (WF) of ZnO with amine-based interfacial mole-cules (AIM) can be controlled by the number of amine groups. AIM with a larger amine group can induce a stronger interface dipole between the amine groups and the ZnO surface, leading to a greater reduction of the WF.

13.
Nat Commun ; 5: 4840, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25204355

RESUMO

Organic light-emitting diodes have been recently focused for flexible display and solid-state lighting applications and so much effort has been devoted to achieve highly efficient organic light-emitting diodes. Here, we improve the efficiency of inverted polymer light-emitting diodes by introducing a spontaneously formed ripple-shaped nanostructure of ZnO and applying an amine-based polar solvent treatment to the nanostructure of ZnO. The nanostructure of the ZnO layer improves the extraction of the waveguide modes inside the device structure, and a 2-ME+EA interlayer enhances the electron injection and hole blocking in addition to reducing exciton quenching between the polar-solvent-treated ZnO and the emissive layer. Therefore, our optimized inverted polymer light-emitting diodes have a luminous efficiency of 61.6 cd A(-1) and an external quantum efficiency of 17.8%, which are the highest efficiency values among polymer-based fluorescent light-emitting diodes that contain a single emissive layer.

14.
Adv Mater ; 26(3): 494-500, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24114852

RESUMO

The interfacial dipolar polarization in inverted structure polymer solar cells, which arises spontaneously from the absorption of ethanolamine end groups, such as amine and hydroxyl groups on ripple-structure zinc oxide (ZnO-R), lowers the contact barrier for electron transport and extraction and leads to enhanced electron mobility, suppression of bimolecular recombination, reduction of the contact resistance and series resistance, and remarkable enhancement of the power conversion efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA