Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Mitochondrial DNA B Resour ; 8(10): 1054-1058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37810614

RESUMO

Allium wallichii Kunth is a herb species with potentially extensive applications because of its edible, ornamental, and pharmaceutical values. The structural characteristics and phylogenetic relationships of its chloroplast genome were determined here for the first time. The complete cp genome was found to be 152,496 bp long, with a GC content of 37.04%. It consists of four distinct regions: a large single copy (LSC) region of 82,510 bp, a small single copy (SSC) region of 17,460 bp, and two inverted repeat (IR) regions of 26,263 bp each. The genome encodes 129 genes, including 86 protein-coding genes, 37 tRNA genes, and six rRNA genes. Our phylogenetic analysis revealed that A. wallichii was closely related to Allium wallichii var. platyphyllum, which are included in the section Bromatorrhiza, subgenus Amerallium Traub of the genus Allium. Our report provides valuable information on the genetic diversity of Allium species.

2.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361951

RESUMO

As a typical ancient tetraploid, soybean (Glycine max) is an important oil crop species and plays a crucial role in supplying edible oil, plant protein and animal fodder worldwide. As global warming intensifies, the yield of soybean in the field is often strongly restricted by drought stress. SNF1-related protein kinase 2 (SnRK2) and type A protein phosphatase 2C (PP2C-A) family members are core components of the abscisic acid (ABA) signal transduction pathway in plants and have been suggested to play important roles in increasing plant tolerance to drought stress, but genetic information supporting this idea is still lacking in soybean. Here, we cloned the GmSnRK2s and GmPP2C-A family genes from the reference genome of Williams 82 soybean. The results showed that the expression patterns of GmSnRK2s and GmPP2C-As are spatiotemporally distinct. The expression of GmSnRK2s in response to ABA and drought signals is not strictly the same as that of Arabidopsis SnRK2 homologous genes. Moreover, our results indicated that the duplicate pairs of GmSnRK2s and GmPP2C-As have similar expression patterns, cis-elements and relationships. GmSnRK2.2 may have a distinct function in the drought-mediated ABA signaling pathway. Furthermore, the results of yeast two-hybrid (Y2H) assays between GmSnRK2s and GmPP2C-As revealed that GmSnRK2.17, GmSnRK2.18, GmSnRK2.22, GmPP2C5, GmPP2C7, GmPP2C10 and GmPP2C17 may play central roles in the crosstalk among ABA signals in response to drought stress. Furthermore, GmPP2C-As and GmSnRKs were targeted by miRNA and validated by degradome sequencing, which may play multiple roles in the crosstalk between ABA and drought signals and other stress signals. Taken together, these results indicate that GmSnRK2s and GmPP2C-As may play a variety of roles in the drought-mediated ABA signaling pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Glycine max/genética , Glycine max/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Arabidopsis/metabolismo , Plantas/metabolismo , Estresse Fisiológico/genética , Proteínas de Arabidopsis/genética
3.
Front Pharmacol ; 13: 984611, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059967

RESUMO

Objective: To explore the active components and epigenetic regulation mechanism underlying the anti-inflammatory effects of Lonicerae Japonicae Flos and Forsythiae Fructus herb-pair (LFP) in carbon tetrachloride (CCl4)-induced rat liver fibrosis. Methods: The main active ingredients and disease-related gene targets of LFP were determined using TCMSP and UniProt, and liver fibrosis disease targets were screened in the GeneCards database. A network was constructed with Cytoscape 3.8.0 and the STRING database, and potential protein functions were analyzed using bioinformatics analysis. Based on these analyses, we determined the main active ingredients of LFP and evaluated their effects in a CCl4-induced rat liver fibrosis model. Serum biochemical indices were measured using commercial kits, hepatocyte tissue damage and collagen deposition were evaluated by histopathological studies, and myofibroblast activation and inflammation were detected by reverse transcription-polymerase chain reaction (RT-PCR) and western blotting. High-performance liquid chromatography-mass spectrometry was performed to determine the levels of homocysteine, reduced glutathione, and oxidized glutathione, which are involved in inflammation and oxidative stress. Results: The main active components of LFP were quercetin, kaempferol, and luteolin, and its main targets were α-smooth muscle actin, cyclooxygenase-2, formyl-peptide receptor-2, prostaglandin-endoperoxide synthase 1, nuclear receptor coactivator-2, interleukinß, tumor necrosis factor α, CXC motif chemokine ligand 14, and transforming growth factor ß1. A combination of quercetin, kaempferol, and luteolin alleviated the symptoms of liver fibrosis. Conclusion: The results of this study support the role of LFP in the treatment of liver fibrosis, and reveal that LFP reduces collagen formation, inflammation, and oxidative stress. This study suggests a potential mechanism of action of LFP in the treatment of liver fibrosis.

4.
Front Genet ; 12: 538733, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747030

RESUMO

Dof (DNA binding with one finger) proteins play important roles in plant development and defense regulatory networks. In the present study, we report a genome-wide analysis of rose Dof genes (RchDof), including phylogenetic inferences, gene structures, chromosomal locations, gene duplications, and expression diversity. A total of 24 full-length RchDof genes were identified in Rosa chinensis, which were assigned to nine distinct subgroups. These RchDof genes were unevenly distributed on rose chromosomes. The genome-scale analysis of synteny indicated that segmental duplication events may have played a major role in the evolution of the RchDof gene family. Analysis of cis-acting elements revealed putative functions of Dofs in rose during development as well as under numerous biotic and abiotic stress conditions. Moreover, the expression profiles derived from qRT-PCR experiments demonstrated distinct expression patterns in various tissues, and gene expression divergence existed among the duplicated RchDof genes, suggesting a fundamentally functional divergence of the duplicated Dof paralogs in rose. The gene expression analysis of RchDofs under drought and salt stress conditions was also performed. The present study offered novel insights into the evolution of RchDofs and can aid in the further functional characterization of its candidate genes.

5.
Am J Chin Med ; 49(2): 487-504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33622211

RESUMO

Mistletoe extracts (Viscum album L.) have been widely used as complementary and alternative medicines for the treatment of cancer, and their cytotoxic effects have been reported on various types of cancer. However, the molecular targets of mistletoe extracts have not been well studied. Herein, we investigated molecules associated with the in vitro and in vivo anticancer effects of mistletoe extract using 4T1 murine breast cancer cells. Mistletoe extract induced apoptosis and inhibited the signal transducer and activator of transcription3 (STAT3) phosphorylation. This inhibition was accompanied by the downregulations of forkhead box M1 (FOXM1) and the DNA repair proteins, RAD51 and survivin. Mistletoe extract simultaneously increased the expression of the DNA damage marker proteins, phosphorylated H2A histone family member X (H2A.X), and phosphorylated p38. Furthermore, mistletoe extract effectively suppressed tumor growth in 4T1 tumor-bearing BALB/c mice. In addition to tumor growth inhibition, mistletoe extract inhibited lung metastasis in the tumor-bearing mice and cell invasiveness by downregulating the expressions of matrix metalloproteinases (MMPs), urokinase-type plasminogen activator (uPA), uPA receptor, and markers of epithelial-mesenchymal transition (snail and fibronectin). Taken together, our results suggest that mistletoe extract targets the STAT3-FOXM1 pathway for its cytotoxic effects, and that mistletoe extracts might be useful for the treatment of patients with cancers highly expressing the STAT3-FOXM1 pathway.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Proteína Forkhead Box M1/metabolismo , Erva-de-Passarinho , Extratos Vegetais/farmacologia , Fator de Transcrição STAT3/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Camundongos , Camundongos Endogâmicos BALB C
7.
Ying Yong Sheng Tai Xue Bao ; 31(1): 173-181, 2020 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-31957394

RESUMO

The effects of 20%-40% fertilizer reduction and different organic fertilizers on soil microbial biomass, enzyme activity and cotton yield were examined for three consecutive years in Hexi area of Gansu, Northwest China. The results showed that compared with single chemical fertilizer application, the abundance of soil bacteria and actinomycetes were significantly increased while that of fungi were decreased with chemical fertilizer reduction combined with organic fertilizer. The abundance of soil bacteria was maximum under the treatment of chemical fertilizer reduction combined with common organic fertilizer and bio-organic fertilizer (COBF2), which was 84.6%, 57.1% and 43.5% higher than that under single application of chemical fertilizer (CF) in the bud stage, boll stage and boll open stage, while the abundance of actinomycetes was maximum under the chemical fertilizer reduction combined with common bio-organic fertilizer (CBF2), which was 28.2%, 32.7% and 32.2% higher than CF. The abundance of fungi was the lowest in the CBF2 treatment, which was 35.8%, 29.3%and 13.4% lower than CF treatment in three periods. The ratios of bacteria to fungi, actinomycetes to fungi and the activity of soil urease, catalase, sucrase and alkaline phosphatase were increased by the chemical fertilizer reduction combined with organic fertilizer. COBF2 was the most effective way to improve enzyme activity. Fertilizer reduction combined with the application of organic fertilizer increased boll number per individual of cotton plant, promoted cotton growth and dry matter accumulation in the ground to a certain extent. The cotton yield under COBF2 treatment was the highest, which showed an significant increase of 14.2% and 10.9% respectively in seed and lint cotton yield than CF. Our results showed that COBF2, with 60% reduction of chemical fertilizer combined with 1800 kg·hm-2 ordinary organic fertilizer and 600 kg·hm-2 biological organic fertilizer, had the best fertilization effect.


Assuntos
Fertilizantes , Solo , Agricultura , Biomassa , China , Microbiologia do Solo
8.
Mol Plant ; 13(2): 336-350, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31838037

RESUMO

The rubber tree, Hevea brasiliensis, produces natural rubber that serves as an essential industrial raw material. Here, we present a high-quality reference genome for a rubber tree cultivar GT1 using single-molecule real-time sequencing (SMRT) and Hi-C technologies to anchor the ∼1.47-Gb genome assembly into 18 pseudochromosomes. The chromosome-based genome analysis enabled us to establish a model of spurge chromosome evolution, since the common paleopolyploid event occurred before the split of Hevea and Manihot. We show recent and rapid bursts of the three Hevea-specific LTR-retrotransposon families during the last 10 million years, leading to the massive expansion by ∼65.88% (∼970 Mbp) of the whole rubber tree genome since the divergence from Manihot. We identify large-scale expansion of genes associated with whole rubber biosynthesis processes, such as basal metabolic processes, ethylene biosynthesis, and the activation of polysaccharide and glycoprotein lectin, which are important properties for latex production. A map of genomic variation between the cultivated and wild rubber trees was obtained, which contains ∼15.7 million high-quality single-nucleotide polymorphisms. We identified hundreds of candidate domestication genes with drastically lowered genomic diversity in the cultivated but not wild rubber trees despite a relatively short domestication history of rubber tree, some of which are involved in rubber biosynthesis. This genome assembly represents key resources for future rubber tree research and breeding, providing novel targets for improving plant biotic and abiotic tolerance and rubber production.


Assuntos
Cromossomos de Plantas/genética , Evolução Molecular , Genoma de Planta/genética , Hevea/genética , Borracha/metabolismo , Mapeamento Cromossômico , Domesticação , Euphorbia/classificação , Euphorbia/genética , Euphorbia/metabolismo , Hevea/classificação , Hevea/metabolismo , Família Multigênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Retroelementos , Tetraploidia
9.
Front Genet ; 10: 363, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191596

RESUMO

The WRKY gene family plays a vital role in plant development and environment response. Although previous studies suggested that the WRKY genes in carrot (Kuroda type) involved in biotic and abiotic stress responses, the information of WRKY genes in the latest version of the carrot genome (Daucus carota v2.0, Nantes type carrot) and their response to hormone and injury stresses have not been reported. In this study, we performed a genome-wide analysis of WRKYs using a chromosome-scale genome assembly of carrot (Daucus carota subsp. sativus L.). We identified a total of 67 WRKY genes, which were further classified into the three groups. These WRKY genes are unevenly distributed on carrot chromosomes. We found that more than half of them were derived from whole-genome duplication (WGD) events, suggesting that WGDs have played a major role during the evolution of the WRKY gene family. We experimentally ascertained the expression divergence existed between WGD-derived WRKY duplicated gene pairs, which is indicative of functional differentiation between duplicated genes. Our analysis of cis-acting elements indicated that WRKY genes were transcriptionally regulated upon hormone and mechanic injury stresses. Gene expression analyses by qRT-PCR further presented that WRKY genes were involved in hormone and mechanic injury stresses.

10.
Oncol Lett ; 17(2): 2523-2530, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30675314

RESUMO

Recent studies have reported that metformin (Met), the first-line medication for the treatment of type 2 diabetes, exhibited anticancer and chemoprotective effects in diverse cancer cells. In this study, we investigated the effects of Met on the drug-resistance of 4T1 murine breast cancer tumorspheres (TS) and the mechanism responsible for its drug-resistance. 4T1 TS exhibited accumulations of cells at the G0/G1 phase compared with cells in monolayer culture, which suggested the majority of cells in TS were quiescent. Furthermore, it was identified that activations of the signal transducer and activator of transcription 3 (STAT3) and protein kinase B (AKT) signaling pathways in 4T1 TS conferred drug-resistance to doxorubicin (Dox) and lapatinib (Lapa). However, Met selectively targeted TS rather than cells in monolayer culture and increased the cytotoxic effect of Dox on TS by inhibiting activations of the STAT3 and AKT signaling pathways. These observations suggested that inhibitions of STAT3 and AKT underlie the selective cytotoxic effects of Met on TS. In addition, Met exhibited synergistic antitumor effects with Dox on 4T1 tumor-bearing BALB/c mice. Our findings suggest that combinations of Met and cytotoxic anticancer drugs may offer an advantage for treating drug-resistant breast cancer.

11.
Chemosphere ; 214: 846-854, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30316177

RESUMO

Nickel-containing wastewater is a serious hazard to water environment, so that it is a burning issue to find an efficient and environment-friendly adsorbent. The conventional biochar could not effectively adsorb nickel (Ni(II)), so our study focuses on exploring the adsorption of chemically modified biochar to Ni(II). In this study, the biochar derived from waste peanut shell was modified by KMnO4 and KOH (MBC). And a series of experiment were carried out to evaluate the sorption ability and explore adsorption mechanism of modified biochar to Ni(II). The results showed the adsorption ability of MBC to Ni(II) reached 87.15 mg g-1. And the reaction process was spontaneous and endothermic chemisorption. Meanwhile, the analysis of FTIR and XPS visually revealed that the amine groups in the modified biochar could form NH2Ni with Ni(II) by complexation, while the hydroxyl could form nickel hydroxide and complexed nickel oxide by co-precipitation and complexation. This research showed this novel MBC is a promising adsorbent and has a fantastic prospect in the application of nickel-containing wastewater.


Assuntos
Arachis/química , Carvão Vegetal/química , Níquel/química
12.
ChemSusChem ; 12(1): 200-207, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30339329

RESUMO

Pyrolyzed base-metal-based metal-organic frameworks (MOFs) with FeNx coordination are emerging as nonprecious metal catalysts for electrochemical oxygen reduction reaction (ORR). However, surprisingly, nonpyrolyzed MOFs involving Fe-N coordination have not been explored for the ORR. This study concerns the catalytic performance of a semiconducting nonpyrolyzed iron triazolate framework (FeTa2 ) for ORR in alkaline electrolyte. The FeTa2 catalyst is studied as composites with different amounts of conductive Ketjenblack carbon (KB). The performance of these FeTa2 -x KB (x denotes the KB/FeTa2 weight ratio) composites by onset and half-wave potentials of ORR appears to be superior to most previously documented nonpyrolyzed MOFs. Characterization by elemental analysis, FTIR spectroscopy, XPS, and cyclic voltammetry suggest that N-FeIII -OH- sites at the surface of FeTa2 function as the catalytic active sites. This FeTa2 also shows very stable activity during ORR, as supported by accelerated durability test of the FeTa2 -x KB sample (20 000 cycles, ca. 90 h). The framework structure of FeTa2 remains intact during the durability test, which would help to explain its excellent catalytic durability. This would be the first study demonstrating efficient and stable ORR catalysis by a nonpyrolyzed Fe-N coordination-based MOF material.

13.
Ying Yong Sheng Tai Xue Bao ; 29(11): 3607-3614, 2018 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-30460807

RESUMO

To examine the effects of biodegradable film on preservation of soil temperature, moisture, growth and yield of cotton fields in Hexi area of Gansu, the trials were conducted with four treatments of DA (biodegradable film A with thickness of 0.012 mm), DB (biodegradable film B with thickness of 0.008 mm), common plastic film and unmulching were used to analyze the changes of degradation property, soil temperature, moisture, weeds control, and yield in 2016 and 2017. The results showed that the induction period of DB was three to five days earlier than that of the DA and the degradation rate was higher than DA. The mass loss rate of DA and DB could reach 95.6% and 94.5% respectively under 180 days landfill treatment. The DA showed good performance in water retention, soil warming in seedling stage, with no significant difference with the common plastic film. Due to the high degradation rate, water retention property, and insulation of DB were significantly lower than that of common plastic film. The growth period of cotton prolonged by biodegradable film compared with common plastic film, but with no significant difference of the emergence rate, boll number per plant, boll mass and lint percentage. However, the pre-frost yield and weeds control effects significantly decreased. There was no significant difference of cotton yield of DA compared with common film, but significantly increased by 73.1% and 59.9% compared with unmulching. The cotton yield of DB was significantly decreased by 11.8% and 7.1% compared with common film. In summary, DA played good performance on the preservation of soil temperature, moisture and the yield increasing effect, which could be applied in Hexi agricultural area of Gansu.


Assuntos
Agricultura/métodos , Biodegradação Ambiental , Biomassa , Gossypium/crescimento & desenvolvimento , China , Solo , Água
14.
Environ Sci Pollut Res Int ; 25(31): 31346-31357, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30194580

RESUMO

Modified biochar has attracted wide attention due to its advantageous adsorption performance. However, the influence of modification process of biochar on adsorption capacity was seldom studied. In this study, biochar derived from corn stalks was modified through two kinds of modification processes: pre-pyrolysis (MBCpre) and post-pyrolysis (MBCpost) modification with citric acid, sodium hydroxide, ferric chloride, respectively. The results showed that the biochar modified by ferric chloride (MBC) provided better adsorption capacity for Cr(VI), and the pre-pyrolysis offered more favorable adsorption capacity for biochar than post-pyrolysis. By means of instrumental analysis, it was found that MBCpre owned highly dispersed Fe3O4 particles and larger surface area, which could be the critical role for enhancing the adsorption capacity of MBCpre. Meanwhile, MBCpost appeared more protonated oxygen-rich functional groups(C=O, -OH, etc.) and adsorbed Cr(VI) by electrostatic attraction and complexation. This study will offer a novel idea for the treatment of chromium-containing wastewater by selecting the modification processes of biochar. Graphical abstract.


Assuntos
Carvão Vegetal/química , Cromo/química , Poluentes Químicos da Água/química , Adsorção , Cloretos/química , Compostos Férricos/química , Águas Residuárias , Zea mays
15.
Onco Targets Ther ; 11: 2875-2890, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29844685

RESUMO

BACKGROUND: Tumor necrosis factor alpha (TNF-α) enhances lymphangiogenesis in gallbladder carcinoma (GBC) via activation of nuclear factor (NF-κB)-dependent vascular endothelial growth factor-C (VEGF-C). Receptor-interacting protein 1 (RIP1) is a multifunctional protein in the TNF-α signaling pathway and is highly expressed in GBC. However, whether RIP1 participates in the signaling pathway of TNF-α-mediated VEGF-C expression that enhances lymphangiogenesis in GBC remains unclear. METHODS: The RIP1 protein levels in the GBC-SD and NOZ cells upon stimulation with increasing concentrations of TNF-α as indicated was examined using Western blot. Lentiviral RIP1 shRNA and siIκBα were constructed and transduced respectively them into NOZ and GBC-SD cells, and then PcDNA3.1-RIP1 vectors was transduced into siRIP1 cell lines to reverse RIP1 expression. The protein expression of RIP1, inhibitor of NF-κB alpha (IκBα), p-IκBα, TAK1, NF-κB essential modulator were examined through immunoblotting or immunoprecipitation. Moreover, VEGF-C mRNA levels were measured by quantitative real-time polymerase chain reaction, VEGF-C protein levels were measured by immunoblotting and enzyme-linked immunosorbent assay, and VEGF-C promoter and NF-κB activities were quantified using a dual luciferase reporter assay. The association of NF-κB with the VEGF-C promoter was analysed by chromatin immunoprecipitation assay. A three-dimensional coculture method and orthotopic transplantation nude mice model were used to evaluate lymphatic tube-forming and metastasis ability in GBC cells. The expression of RIP1 protein, TNF-α protein and lymphatic vessels in human GBC tissues was examined by immunohistochemistry, and the dependence between RIP1 protein with TNF-α protein and lymphatic vessel density was analysed. RESULTS: TNF-α dose- and time-dependently increased RIP1 protein expression in the GBC-SD and NOZ cells of GBC, and the strongest effect was observed with a concentration of 50 ng/ml. RIP1 is fundamental for TNF-α-mediated NF-κB activation in GBC cells and can regulate TNF-α-mediated VEGF-C expression at the protein and transcriptional levels through the NF-κB pathway. RIP1 can regulate TNF-α-mediated lymphatic tube formation and metastasis in GBC cells both in vitro and vivo. The average optical density of RIP1 was linearly related to that of TNF-α protein and the lymphatic vessel density in GBC tissues. CONCLUSION: We conclude that RIP1 regulates TNF-α-mediated lymphangiogenesis and lymph node metastasis in GBC by modulating the NF-κB-VEGF-C pathway.

16.
Mol Plant ; 10(6): 866-877, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28473262

RESUMO

Tea is the world's oldest and most popular caffeine-containing beverage with immense economic, medicinal, and cultural importance. Here, we present the first high-quality nucleotide sequence of the repeat-rich (80.9%), 3.02-Gb genome of the cultivated tea tree Camellia sinensis. We show that an extraordinarily large genome size of tea tree is resulted from the slow, steady, and long-term amplification of a few LTR retrotransposon families. In addition to a recent whole-genome duplication event, lineage-specific expansions of genes associated with flavonoid metabolic biosynthesis were discovered, which enhance catechin production, terpene enzyme activation, and stress tolerance, important features for tea flavor and adaptation. We demonstrate an independent and rapid evolution of the tea caffeine synthesis pathway relative to cacao and coffee. A comparative study among 25 Camellia species revealed that higher expression levels of most flavonoid- and caffeine- but not theanine-related genes contribute to the increased production of catechins and caffeine and thus enhance tea-processing suitability and tea quality. These novel findings pave the way for further metabolomic and functional genomic refinement of characteristic biosynthesis pathways and will help develop a more diversified set of tea flavors that would eventually satisfy and attract more tea drinkers worldwide.


Assuntos
Cafeína/biossíntese , Camellia sinensis/química , Bebidas , Genômica/métodos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética
17.
Oncol Rep ; 37(2): 1219-1226, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28035396

RESUMO

TAM receptor tyrosine kinases (RTKs), Tyro3, Axl and MerTK, transduce diverse signals responsible for cell survival, growth, proliferation and anti-apoptosis. In the present study, we demonstrated the effect of luteolin, a flavonoid with antioxidant, anti-inflammatory and anticancer activities, on the expression and activation of TAM RTKs and the association with its cytotoxicity in non-small cell lung cancer (NSCLC) cells. We observed the cytotoxic effect of luteolin in parental A549 and H460 cells as well as in cisplatin-resistant A549/CisR and H460/CisR cells. Exposure of these cells to luteolin also resulted in a dose­dependent decrease in clonogenic ability. Next, luteolin was found to decrease the protein levels of all three TAM RTKs in the A549 and A549/CisR cells in a dose­dependent manner. In a similar manner, in H460 and H460/CisR cells, the protein levels of Axl and Tyro3 were decreased following luteolin treatment. In addition, Axl promoter activity was decreased by luteolin, indicating that luteolin suppresses Axl expression at the transcriptional level. We next found that luteolin abrogated Axl phosphorylation in response to growth arrest-specific 6 (Gas6), its ligand, implying the inhibitory effect of luteolin on Gas6-induced Axl activation. Ectopic expression of Axl was observed to attenuate the antiproliferative effect of luteolin, while knockdown of the Axl protein level using a gold nanoparticle-assisted gene delivery system increased its cytotoxicity. In contrast to the inhibitory effect of luteolin on the expression of TAM RTKs, interleukin-8 (IL-8) production was not decreased by luteolin in H460 and H460/CisR cells, while IL-8 production/cell was increased. Collectively, our data suggest that TAM RTKs, but not IL-8, are promising therapeutic targets of luteolin to abrogate cell proliferation and to overcome chemoresistance in NSCLC cells.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Interleucina-8/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Luteolina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , c-Mer Tirosina Quinase , Receptor Tirosina Quinase Axl
18.
Oncotarget ; 7(50): 83308-83318, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27829217

RESUMO

Breast cancer is the most common malignant disease occurring in women and represents a substantial proportion of the global cancer burden. In these patients, metastasis but not the primary tumor is the main cause of breast cancer-related deaths. Here, we report the novel finding that DN10764 (AZD7762, a selective inhibitor of checkpoint kinases 1 and 2) can suppress breast cancer metastasis. In breast cancer cells, DN10764 inhibited cell proliferation and GAS6-mediated AXL signaling, consequently resulting in suppressed migration and invasion. In addition, DN10764 induced caspase 3/7-mediated apoptosis in breast cancer cells and inhibited tube formation of human umbilical vein endothelial cells. Finally, DN10764 significantly suppressed the tumor growth and metastasis of breast cancer cells in in vivo metastasis models. Taken together, these data suggest that therapeutic strategies targeting AXL in combination with systemic therapies could improve responses to anti-cancer therapies and reduce breast cancer recurrence and metastases.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Neoplasias Pulmonares/prevenção & controle , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Tiofenos/farmacologia , Ureia/análogos & derivados , Células A549 , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/secundário , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral/efeitos dos fármacos , Ureia/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
19.
ChemSusChem ; 9(17): 2301-6, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27514790

RESUMO

Iron and nitrogen co-doped carbon (Fe-N-C) materials are among the most active non-precious metal catalysts that could replace Pt-based electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries. The synthesis of the Fe-N-C catalysts often involves the use of aniline as the precursor for both N and C and ammonium peroxydisulfate (APS) as an indispensable oxidative initiator for aniline polymerization. Herein, a detailed structure and catalytic ORR performance comparison of aniline-derived Fe-N-C catalysts synthesized with and without the use of APS is reported. The APS-free preparation, which uses Fe(III) ions as the Fe source as well as the aniline polymerization initiator, results in a simple Fe-N-C catalyst with a high activity for the ORR. We show that APS is not necessary for the preparation and even detrimental to the performance of the catalyst.


Assuntos
Sulfato de Amônio/química , Compostos de Anilina/química , Carbono/química , Ferro/química , Nitrogênio/química , Catálise , Eletroquímica , Cinética
20.
Lipids Health Dis ; 14: 63, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-26129832

RESUMO

BACKGROUND: Hypercholesterolemia arising from abnormal lipid metabolism is one of the critical risk factors for coronary artery disease (CAD), however the roles of genetic variants in lipid metabolism-related genes on premature CAD (≤ 60 years old) development still require further investigation. We herein genotyped four single nucleotide polymorphisms (SNPs) in lipid metabolism-related genes (rs1132899 and rs5167 in APOC4, rs1801693 and rs7765781 in LPA), aimed to shed light on the influence of these SNPs on individual susceptibility to early-onset CAD. METHODS: Genotyping of the four SNPs (rs1132899, rs5167, rs1801693 and rs7765781) was performed in 224 premature CAD cases and 297 control subjects (≤ 60 years old) using polymerase chain reaction-ligation detection reaction (PCR-LDR) method. The association of these SNPs with premature CAD was performed with SPSS software. RESULTS: Multivariate logistic regression analysis showed that C allele (OR = 1.50, P = 0.027) and CC genotype (OR = 2.84, P = 0.022) of APOC4 rs1132899 were associated with increased premature CAD risk, while the other three SNPs had no significant effect. Further stratified analysis uncovered a more evident association with the risk of premature CAD among male subjects (C allele, OR = 1.65, and CC genotype, OR = 3.33). CONCLUSIONS: Our data provides the first evidence that APOC4 rs1132899 polymorphism was associated with an increased risk of premature CAD in Chinese subjects, and the association was more significant among male subjects.


Assuntos
Apolipoproteínas C/genética , Povo Asiático/genética , Doença da Artéria Coronariana/genética , Etnicidade/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Análise de Variância , Estudos de Casos e Controles , Doença da Artéria Coronariana/sangue , Feminino , Humanos , Lipídeos/sangue , Lipoproteína(a)/genética , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Fatores de Risco , Fumar/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA