Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; : e2304118, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438619

RESUMO

Molybdenum carbides are promising low-cost electrocatalysts for electrolyzers, fuel cells, and batteries. However, synthesis of ultrafine, phase-pure carbide nanoparticles (diameter < 5 nm) with large surface areas remains challenging due to uncontrollable agglomeration that occurs during traditional high temperature syntheses. This work presents a scalable, physical approach to synthesize molybdenum carbide nanoparticles at room temperature by ion implantation. By tuning the implantation conditions, various molybdenum carbide phases, stoichiometries, and nanoparticle sizes can be accessed. For instance, molybdenum ion implantation into glassy carbon at 30 keV energy and to a fluence of 9 × 1016 at cm-2 yields a surface η-Mo3 C2 with a particle diameter of (10 ± 1) nm. Molybdenum implantation into glassy carbon at 60 keV to a fluence of 6 × 1016 at cm-2 yields a buried layer of ultrafine γ'-MoC/η-MoC nanoparticles. Carbon ion implantation at 20 keV into a molybdenum thin film produces a 40 nm thick layer primarily composed of ß-Mo2 C. The formation of nanoparticles in each molybdenum carbide phase is explained based on the Mo-C phase diagram and Monte-Carlo simulations of ion-solid interactions invoking the thermal spike model. The approaches presented are widely applicable for synthesis of other transition metal carbide nanoparticles as well.

2.
Nat Commun ; 14(1): 1693, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973266

RESUMO

The conducting boundary states of topological insulators appear at an interface where the characteristic invariant ℤ2 switches from 1 to 0. These states offer prospects for quantum electronics; however, a method is needed to spatially-control ℤ2 to pattern conducting channels. It is shown that modifying Sb2Te3 single-crystal surfaces with an ion beam switches the topological insulator into an amorphous state exhibiting negligible bulk and surface conductivity. This is attributed to a transition from ℤ2 = 1 → ℤ2 = 0 at a threshold disorder strength. This observation is supported by density functional theory and model Hamiltonian calculations. Here we show that this ion-beam treatment allows for inverse lithography to pattern arrays of topological surfaces, edges and corners which are the building blocks of topological electronics.

3.
Environ Sci Technol ; 57(4): 1837-1847, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36594827

RESUMO

Biochar amendments add persistent organic carbon to soil and can stabilize rhizodeposits and existing soil organic carbon (SOC), but effects of biochar on subsoil carbon stocks have been overlooked. We quantified changes in soil inorganic carbon (SIC) and SOC to 2 m depth 10 years after biochar application to calcareous soil. The total soil carbon (i.e., existing SOC, SIC, and biochar-C) increased by 71, 182, and 210% for B30, B60, and B90, respectively. Biochar application at 30, 60, and 90 t ha-1 rates significantly increased SIC by 10, 38, and 68 t ha-1, respectively, with accumulation mainly occurring in the subsoil (below 1 m). This huge increase of SIC (mainly CaCO3) is ∼100 times larger than the inorganic carbon present in the added biochar (0.3, 0.6, or 0.9 t ha-1). The benzene polycarboxylic acid method showed that the biochar-amended soil contained more black carbon particles (6.8 times higher than control soil) in the depth of 1.4-1.6 m, which provided the direct quantitative evidence for biochar migration into subsoil after a decade. Spectral and energy spectrum analysis also showed an obvious biochar structure in the biochar-amended subsoil, accompanied by a Ca/Mg carbonate cluster, which provided further evidence for downward migration of biochar after a decade. To explain SIC accumulation in subsoil with biochar amendment, the interacting mechanisms are proposed: (1) biochar amendment significantly increases subsoil pH (0.3-0.5 units) 10 years after biochar application, thus forming a favorable pH environment in the subsoil to precipitate HCO3-; and (2) the transported biochar in subsoil can act as nuclei to precipitate SIC. Biochar amendment enhanced SIC by up to 80%; thus, the effects on carbon stocks in subsoil must be understood to inform strategies for carbon dioxide removal through biochar application. Our study provided critical knowledge on the impact of biochar application to topsoil on carbon stocks in subsoil in the long term.


Assuntos
Carbono , Solo , Solo/química , Sequestro de Carbono , Carvão Vegetal
4.
Data Brief ; 40: 107674, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34917713

RESUMO

This Data-in-brief article includes datasets of electron microscopy, polarised neutron reflectometry and magnetometry for ultra-small cobalt particles formed in titania thin films via ion beam synthesis. Raw data for polarised neutron reflectometry, magnetometry and the particle size distribution are included and made available on a public repository. Additional elemental maps from scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) are also presented. Data were obtained using the following types of equipment: the NREX and PLATYPUS polarised neutron reflectometers; a Quantum Design Physical Property Measurement System (14 T); a JEOL JSM-6490LV SEM, and a JEOL ARM-200F scanning transmission electron microscope (STEM). The data is provided as supporting evidence for the article in Applied Surface Science (A. Bake et al., Appl. Surf. Sci., vol. 570, p. 151068, 2021, DOI 10.1016/j.apsusc.2021.151068), where a full discussion is given. The additional supplementary reflectometry and modelling datasets are intended to assist future scientific software development of advanced fitting algorithms for magnetization gradients in thin films.

5.
Rev Sci Instrum ; 92(2): 023103, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648053

RESUMO

The amount and distribution of water in nominally anhydrous minerals (NAMs) are usually determined by Fourier-transform infrared spectroscopy. This method is limited by the spot size of the beam to the study of samples with dimensions greater than a few micrometers. Here, we demonstrate the potential of using photoinduced force microscopy for the measurement of water in NAMs with samples sizes down to the nanometer scale with a study of water concentration across grain boundaries in forsterite. This development will enable the study of water speciation and diffusion in small-grained rock matrixes and allow a determination of the influence of nanoscale heterogeneity on the incorporation of water to NAMs.

6.
Nanotechnology ; 30(43): 435301, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31393838

RESUMO

We present a novel framework for the fabrication of geometrically complex structures at the micro- and nano-scale which relies on the synergy of integrated computer-aided design and manufacturing systems (CAD/CAM) and focused ion beam (FIB) technology in a scanning electron microscope. Here we utilise industry standard G-code syntax, for the first time, to FIB machining by designing geometries with CAD, defining machining strategies and exporting G-codes with CAM and generating a coordinate list-based beam path by using a custom-built interpreter program. This allows the fabrication of complex structures from CAD models using syntax which is readily understood in the general fabrication industry. The use of G-code allows optimization of the beam path towards a reduction of beam blanking operations and tracing of contours, leading to minimized re-deposition of material. We give a detailed description of the method, use an application example to demonstrate advantages and prospects of the approach and provide the free and open-source interpreter program CAM2FIB for application of this method. We contrast and compare various existing available milling strategies and demonstrate the versatility of G-code based programming.

7.
Adv Mater ; 30(35): e1802595, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30015992

RESUMO

Electrical communication between a biological system and outside equipment allows one to monitor and influence the state of the tissue and nervous networks. As the bridge, bioelectrodes should possess both electrical conductivity and adaptive mechanical properties matching the target soft biosystem, but this is still a big challenge. A family of liquid-metal-based magnetoactive slurries (LMMSs) formed by dispersing magnetic iron particles in a Ga-based liquid metal (LM) matrix is reported here. The mechanical properties, viscosity, and stiffness of such materials rapidly respond to the stimulus of an applied magnetic field. By varying the intensity of the magnetic field, regulation within a factor of 1000 of the Young's modulus from ≈kPa to ≈MPa, and the ability to reach GPa with more dense iron particles inside the LMMS are demonstrated. With the advantage of high conductivity of the LM matrix, the functions of the LMMS are not only limited to the soft implanted electrodes or penetrating electrodes in biosystems: the electrical response based on the LMMS electrodes can also be precisely tuned by simply regulating the applied magnetic field.


Assuntos
Magnetismo , Módulo de Elasticidade , Condutividade Elétrica , Eletrodos Implantados , Metais , Viscosidade
8.
Micron ; 103: 53-63, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28972922

RESUMO

The present case study compares transmission Kikuchi diffraction (TKD) with electron back-scattering diffraction (EBSD) on the same area of an electron transparent cross-section of a twinning induced plasticity steel. While TKD expectedly provides better clarity of internal defect substructures in the band contrast map, EBSD returns orientation data that approaches the quality of the TKD map. This was rationalised by Monte Carlo simulations of the electron energy spreads, which showed that due to the geometry-based compromises associated with adapting a conventional EBSD detector (which is off-axis with respect to the incident electron beam) to TKD, a broadening in the electron energy distribution of the forward-scattered electrons collected on the detector phosphor screen, is unavoidable. In this circumstance, the values of the full-widths at half-maximum of the energy distributions for TKD and EBSD are of the same order. It follows that EBSD on electron transparent cross-sections may be a viable alternative to TKD when: (i) conventional EBSD detectors are adapted to TKD and, (ii) sample microstructures comprise features whose sizes do not mandate the application of TKD.

9.
Sci Rep ; 7(1): 3988, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28638080

RESUMO

Magnesium-based thermoelectric materials (Mg2X, X = Si, Ge, Sn) have received considerable attention due to their availability, low toxicity, and reasonably good thermoelectric performance. The synthesis of these materials with high purity is challenging, however, due to the reactive nature and high vapour pressure of magnesium. In the current study, high purity single phase n-type Mg2Ge has been fabricated through a one-step reaction of MgH2 and elemental Ge, using spark plasma sintering (SPS) to reduce the formation of magnesium oxides due to the liberation of hydrogen. We have found that Bi has a very limited solubility in Mg2Ge and results in the precipitation of Mg2Bi3. Bismuth doping increases the electrical conductivity of Mg2Ge up to its solubility limit, beyond which the variation is minimal. The main improvement in the thermoelectric performance is originated from the significant phonon scattering achieved by the Mg2Bi3 precipitates located mainly at grain boundaries. This reduces the lattice thermal conductivity by ~50% and increases the maximum zT for n-type Mg2Ge to 0.32, compared to previously reported maximum value of 0.2 for Sb-doped Mg2Ge.

10.
Microsc Res Tech ; 78(10): 886-93, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26260274

RESUMO

A simple procedure, which enables accurate measurement of transmission electron microscopy (TEM)/STEM probe currents using an energy loss spectrometer drift tube is described. The currents obtained are compared with those measured on the fluorescent screen to enable the losses due to secondary and backscattered electrons to be determined. The current values obtained from the drift tube allow the correction of fluorescent screen current densities to yield true current. They also enable CCD conversion efficiencies to be obtained, which in turn allows images to be calibrated in terms of electron fluence. Using probes of known current in conjunction with a NiO reference specimen enables the X-ray detector solid angle to be determined. The NiO specimen also allows a wide range of other EDS detector parameters to be obtained, including the presence of ice and carbon contamination. A range of performance characteristics are reported for two large area EDS detector systems. Many of the measurements reported herein have been automated via the use of freely available scripts for DigitalMicrograph.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA