Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Res Sq ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38699332

RESUMO

H2O2 is a key oxidant in mammalian biology and a pleiotropic signaling molecule at the physiological level, and its excessive accumulation in conjunction with decreased cellular reduction capacity is often found to be a common pathological marker. Here, we present a red fluorescent Genetically Encoded H2O2 Indicator (GEHI) allowing versatile optogenetic dissection of redox biology. Our new GEHI, oROS-HT, is a chemigenetic sensor utilizing a HaloTag and Janelia Fluor (JF) rhodamine dye as fluorescent reporters. We developed oROS-HT through a structure-guided approach aided by classic protein structures and recent protein structure prediction tools. Optimized with JF635, oROS-HT is a sensor with 635 nm excitation and 650 nm emission peaks, allowing it to retain its brightness while monitoring intracellular H2O2 dynamics. Furthermore, it enables multi-color imaging in combination with blue-green fluorescent sensors for orthogonal analytes and low auto-fluorescence interference in biological tissues. Other advantages of oROS-HT over alternative GEHIs are its fast kinetics, oxygen-independent maturation, low pH sensitivity, lack of photo-artifact, and lack of intracellular aggregation. Here, we demonstrated efficient subcellular targeting and how oROS-HT can map inter and intracellular H2O2 diffusion at subcellular resolution. Lastly, we used oROS-HT with other green fluorescence reporters to investigate the transient effect of the anti-inflammatory agent auranofin on cellular redox physiology and calcium levels via multi-parametric, dual-color imaging.

2.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370715

RESUMO

H2O2 is a key oxidant in mammalian biology and a pleiotropic signaling molecule at the physiological level, and its excessive accumulation in conjunction with decreased cellular reduction capacity is often found to be a common pathological marker. Here, we present a red fluorescent Genetically Encoded H2O2 Indicator (GEHI) allowing versatile optogenetic dissection of redox biology. Our new GEHI, oROS-HT, is a chemigenetic sensor utilizing a HaloTag and Janelia Fluor (JF) rhodamine dye as fluorescent reporters. We developed oROS-HT through a structure-guided approach aided by classic protein structures and recent protein structure prediction tools. Optimized with JF635, oROS-HT is a sensor with 635 nm excitation and 650 nm emission peaks, allowing it to retain its brightness while monitoring intracellular H2O2 dynamics. Furthermore, it enables multi-color imaging in combination with blue-green fluorescent sensors for orthogonal analytes and low auto-fluorescence interference in biological tissues. Other advantages of oROS-HT over alternative GEHIs are its fast kinetics, oxygen-independent maturation, low pH sensitivity, lack of photo-artifact, and lack of intracellular aggregation. Here, we demonstrated efficient subcellular targeting and how oROS-HT can map inter and intracellular H2O2 diffusion at subcellular resolution. Lastly, we used oROS-HT with the green fluorescent calcium indicator Fluo-4 to investigate the transient effect of the anti-inflammatory agent auranofin on cellular redox physiology and calcium levels via multi-parametric, dual-color imaging.

3.
Nat Nanotechnol ; 19(3): 273-274, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158437
4.
Bioeng Transl Med ; 8(6): e10594, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023719

RESUMO

Immune checkpoint inhibitors (ICI), pembrolizumab and atezolizumab, were recently approved for treatment-refractory triple-negative breast cancer (TNBC), where those with Programmed death-ligand 1 (PD-L1) positive early-stage disease had improved responses. ICIs are administered systemically in the clinic, however, reaching effective therapeutic dosing is challenging due to severe off-tumor toxicities. As such, intratumoral (IT) injection is increasingly investigated as an alternative delivery approach. However, repeated administration, which sometimes is invasive, is required due to rapid drug clearance from the tumor caused by increased interstitial fluid pressure. To minimize off-target drug biodistribution, we developed the nanofluidic drug-eluting seed (NDES) platform for sustained intratumoral release of therapeutic via molecular diffusion. Here we compared drug biodistribution between the NDES, intraperitoneal (IP) and intratumoral (IT) injection using fluorescently labeled PD-L1 monoclonal antibody (αPD-L1). We used two syngeneic TNBC murine models, EMT6 and 4T1, that differ in PD-L1 expression, immunogenicity, and transport phenotype. We investigated on-target (tumor) and off-target distribution using different treatment approaches. As radiotherapy is increasingly used in combination with immunotherapy, we sought to investigate its effect on αPD-L1 tumor accumulation and systemic distribution. The NDES-treated cohort displayed sustained levels of αPD-L1 in the tumor over the study period of 14 days with significantly lower off-target organ distribution, compared to the IP or IT injection. However, we observed differences in the biodistribution of αPD-L1 across tumor models and with radiation pretreatment. Thus, we sought to extensively characterize the tumor properties via histological analysis, diffusion evaluation and nanoparticles contrast-enhanced CT. Overall, we demonstrate that ICI delivery via NDES is an effective method for sustained on-target tumor delivery across tumor models and combination treatments.

5.
Front Cell Neurosci ; 17: 1188858, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545881

RESUMO

Background: We performed a systematic review that identified at least 9,000 scientific papers on PubMed that include immunofluorescent images of cells from the central nervous system (CNS). These CNS papers contain tens of thousands of immunofluorescent neural images supporting the findings of over 50,000 associated researchers. While many existing reviews discuss different aspects of immunofluorescent microscopy, such as image acquisition and staining protocols, few papers discuss immunofluorescent imaging from an image-processing perspective. We analyzed the literature to determine the image processing methods that were commonly published alongside the associated CNS cell, microscopy technique, and animal model, and highlight gaps in image processing documentation and reporting in the CNS research field. Methods: We completed a comprehensive search of PubMed publications using Medical Subject Headings (MeSH) terms and other general search terms for CNS cells and common fluorescent microscopy techniques. Publications were found on PubMed using a combination of column description terms and row description terms. We manually tagged the comma-separated values file (CSV) metadata of each publication with the following categories: animal or cell model, quantified features, threshold techniques, segmentation techniques, and image processing software. Results: Of the almost 9,000 immunofluorescent imaging papers identified in our search, only 856 explicitly include image processing information. Moreover, hundreds of the 856 papers are missing thresholding, segmentation, and morphological feature details necessary for explainable, unbiased, and reproducible results. In our assessment of the literature, we visualized current image processing practices, compiled the image processing options from the top twelve software programs, and designed a road map to enhance image processing. We determined that thresholding and segmentation methods were often left out of publications and underreported or underutilized for quantifying CNS cell research. Discussion: Less than 10% of papers with immunofluorescent images include image processing in their methods. A few authors are implementing advanced methods in image analysis to quantify over 40 different CNS cell features, which can provide quantitative insights in CNS cell features that will advance CNS research. However, our review puts forward that image analysis methods will remain limited in rigor and reproducibility without more rigorous and detailed reporting of image processing methods. Conclusion: Image processing is a critical part of CNS research that must be improved to increase scientific insight, explainability, reproducibility, and rigor.

6.
ACS Appl Bio Mater ; 6(9): 3617-3632, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37582179

RESUMO

In a myriad of developmental and degenerative brain diseases, characteristic pathological biomarkers are often associated with cerebral blood flow and vasculature. However, the relationship between vascular dysfunction and markers of brain disease is not well-defined. Additionally, it is difficult to deliver effective therapeutics to the brain due to the highly regulated blood-brain barrier (BBB) at the microvasculature interface of the brain. This Review first covers the need for modeling the BBB and the challenges of modeling the BBB. In vitro models of the BBB enable the study of the relationship between vascular dysfunction, BBB function, and disease progression and can serve as a platform to screen therapeutics. In particular, microfluidic-based in vitro BBB models are useful for studying brain vasculature as they support cell culture within the presence of continuous perfusion, which mirrors the in vivo flow and associated stress conditions in the brain. Early microfluidic models of the BBB created the most simplistic models possible that still displayed some functional aspects of the in vivo BBB. Therefore, this Review also discusses the emerging unique ways in which microfluidics in tandem with recent advancements in cell culture, biomaterials, and in vitro modeling can be used to develop more complex and physiologically relevant models of the BBB. Finally, we discuss the current and future state-of-the-art application of microfluidic BBB models for drug development and disease modeling, and the ongoing areas of needed innovation in this field.


Assuntos
Barreira Hematoencefálica , Microfluídica , Barreira Hematoencefálica/patologia , Encéfalo
7.
Pharmaceutics ; 15(4)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37111661

RESUMO

The development of therapeutics for pediatric use has advanced in the last few decades, yet the off-label use of adult medications in pediatrics remains a significant clinical problem. Nano-based medicines are important drug delivery systems that can improve the bioavailability of a range of therapeutics. However, the use of nano-based medicines for application in pediatric populations is challenged by the lack of pharmacokinetic (PK) data in this population. To address this data gap, we investigated the PK of polymer-based nanoparticles in term-equivalent neonatal rats. We used poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticles, which are polymer nanoparticles that have been extensively studied in adult populations but less commonly applied in neonates and pediatrics. We quantified the PK parameters and biodistribution of PLGA-PEG nanoparticles in term-equivalent healthy rats and revealed the PK and biodistribution of polymeric nanoparticles in neonatal rats. We further explored the effects of surfactant used to stabilize PLGA-PEG particles on PK and biodistribution. We showed that 4 h post intraperitoneal injection, nanoparticles had the highest accumulation in serum, at 54.0% of the injected dose for particles with Pluronic® F127 (F127) as the stabilizer and at 54.6% of the injected dose for particles with Poloxamer 188 (P80) as the stabilizer. The half-life of the F127-formulated PLGA-PEG particles was 5.9 h, which was significantly longer than the 1.7 h half-life of P80-formulated PLGA-PEG particles. Among all organs, the liver had the highest nanoparticle accumulation. At 24 h after administration, the accumulation of F127-formulated PLGA-PEG particles was at 26.2% of the injected dose, and the accumulation of P80-formulated particles was at 24.1% of the injected dose. Less than 1% of the injected nanoparticles was observed in healthy rat brain for both F127- and P80-formulated particles. These PK data inform the use of polymer nanoparticle applications in the neonate and provide a foundation for the translation of polymer nanoparticles for drug delivery in pediatric populations.

8.
J Control Release ; 358: 27-42, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37054778

RESUMO

Glutamate carboxypeptidase II (GCPII), localized on the surface of astrocytes and activated microglia, regulates extracellular glutamate concentration in the central nervous system (CNS). We have previously shown that GCPII is upregulated in activated microglia in the presence of inflammation. Inhibition of GCPII activity could reduce glutamate excitotoxicity, which may decrease inflammation and promote a 'normal' microglial phenotype. 2-(3-Mercaptopropyl) pentanedioic acid (2-MPPA) is the first GCPII inhibitor that underwent clinical trials. Unfortunately, immunological toxicities have hindered 2-MPPA clinical translation. Targeted delivery of 2-MPPA specifically to activated microglia and astrocytes that over-express GCPII has the potential to mitigate glutamate excitotoxicity and attenuate neuroinflammation. In this study, we demonstrate that 2-MPPA when conjugated to generation-4, hydroxyl-terminated polyamidoamine (PAMAM) dendrimers (D-2MPPA) localize specifically in activated microglia and astrocytes only in newborn rabbits with cerebral palsy (CP), not in controls. D-2MPPA treatment led to higher 2-MPPA levels in the injured brain regions compared to 2-MPPA treatment, and the extent of D-2MPPA uptake correlated with the injury severity. D-2MPPA was more efficacious than 2-MPPA in decreasing extracellular glutamate level in ex vivo brain slices of CP kits, and in increasing transforming growth factor beta 1 (TGF-ß1) level in primary mixed glial cell cultures. A single systemic intravenous dose of D-2MPPA on postnatal day 1 (PND1) decreased microglial activation and resulted in a change in microglial morphology to a more ramified form along with amelioration of motor deficits by PND5. These results indicate that targeted dendrimer-based delivery specifically to activated microglia and astrocytes can improve the efficacy of 2-MPPA by attenuating glutamate excitotoxicity and microglial activation.


Assuntos
Paralisia Cerebral , Dendrímeros , Animais , Coelhos , Paralisia Cerebral/metabolismo , Dendrímeros/metabolismo , Ácido Glutâmico , Encéfalo/metabolismo , Microglia/metabolismo , Inflamação/tratamento farmacológico
9.
Polymers (Basel) ; 14(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36365724

RESUMO

Protein therapeutics have the potential to treat a wide range of ailments due to the high specificity in their function and their ability to replace missing or mutated genes that encode for key cellular processes. Despite these advantages, protein drugs alone can cause adverse effects, such as the development of cross-reactive neutralizing antibodies. Through the encapsulation of proteins into nanoparticles, adverse effects and protein degradation can be minimized, thus improving protein delivery to sites of interest in the body. Nanoparticles comprised of poly(lactic acid-co-glycolic acid)-polyethylene glycol (PLGA-PEG) diblock copolymer are promising protein delivery systems as they are well characterized, non-toxic, and biocompatible. Desirable nanoparticle characteristics, such as neutral surface charge and uniformity in size and dispersity, can be achieved but often require the iterative manipulation of formulation parameters. Chain conformations in the formulation process are very important, and determining whether or not an extended or semi-collapsed polymer chain in the presence of a protein results in more favorable binding has yet to be investigated experimentally. Therefore, this work used atomistic molecular dynamics to examine the role of polymer extension on protein binding and its impact on the encapsulation process within PLGA-PEG nanoparticles. Three polymers (PLGA-PEG, PLGA, and PEG) were evaluated and iduronate-2-sulphatase (ID2S) was used as a model protein. We found highly expanded PLGA-PEG conformations led to more favorable binding with ID2S. Furthermore, PEG oligomers were observed to undergo transient binding with ID2S that was generally less favorable when compared to the other polymer types. The results also suggest that the relaxation times of the PLGA homopolymer and the PLGA-PEG copolymer at different molecular weights in relevant solvent mediums should be considered.

10.
Life (Basel) ; 12(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36143345

RESUMO

The number of reported cases of neurodevelopmental disorders has increased significantly in the last few decades, but the etiology of these diseases remains poorly understood. There is evidence of a fundamental link between genetic abnormalities and symptoms of autism spectrum disorders (ASDs), and the most common monogenetic inheritable form of ASDs is Fragile X Syndrome (FXS). Previous studies indicate that FXS is linked to glutamate signaling regulation by the G-protein-coupled metabotropic glutamate receptor 5 (mGluR5), which has been shown to have a regulatory role in neuroinflammation. We characterized the effect of knocking out mGluR5 in an organism known to have complex cognitive functions-the rat. The heterozygous phenotype is the most clinically relevant; therefore, we performed analysis in heterozygous pups. We showed developmental abnormalities in heterozygous mGluR5 knockout rats, as well as a significant increase in chemokine (C-X-C motif) ligand 1 (CXCL) expression, a hallmark indicator of early onset inflammation. We quantified an increase in microglial density in the knockout pups and quantified morphological phenotypes representative of greater reactivity in the male vs. female and postnatal day 28 heterozygous pups compared to postnatal day 14 heterozygous pups. In response to injury, reactive microglia release matrix metalloproteases, contribute to extracellular matrix (ECM) breakdown, and are responsible for eradicating cellular and molecular debris. In our study, the changes in microglial density and reactivity correlated with abnormalities in the mRNA expression levels of ECM proteins and with the density of perineuronal nets. We saw atypical neuropsychiatric behavior in open field and elevated plus tests in heterozygous pups compared to wild-type litter and age-matched controls. These results demonstrate the pathological potential of the mGluR5 knockout in rats and further support the presence of neuroinflammatory roots in ASDs.

11.
J Biol Eng ; 16(1): 14, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698088

RESUMO

BACKGROUND: The brain extracellular environment is involved in many critical processes associated with neurodevelopment, neural function, and repair following injury. Organization of the extracellular matrix and properties of the extracellular space vary throughout development and across different brain regions, motivating the need for platforms that provide access to multiple brain regions at different stages of development. We demonstrate the utility of organotypic whole hemisphere brain slices as a platform to probe regional and developmental changes in the brain extracellular environment. We also leverage whole hemisphere brain slices to characterize the impact of cerebral ischemia on different regions of brain tissue. RESULTS: Whole hemisphere brain slices taken from postnatal (P) day 10 and P17 rats retained viable, metabolically active cells through 14 days in vitro (DIV). Oxygen-glucose-deprivation (OGD), used to model a cerebral ischemic event in vivo, resulted in reduced slice metabolic activity and elevated cell death, regardless of slice age. Slices from P10 and P17 brains showed an oligodendrocyte and microglia-driven proliferative response after OGD exposure, higher than the proliferative response seen in DIV-matched normal control slices. Multiple particle tracking in oxygen-glucose-deprived brain slices revealed that oxygen-glucose-deprivation impacts the extracellular environment of brain tissue differently depending on brain age and brain region. In most instances, the extracellular space was most difficult to navigate immediately following insult, then gradually provided less hindrance to extracellular nanoparticle diffusion as time progressed. However, changes in diffusion were not universal across all brain regions and ages. CONCLUSIONS: We demonstrate whole hemisphere brain slices from P10 and P17 rats can be cultured up to two weeks in vitro. These brain slices provide a viable platform for studying both normal physiological processes and injury associated mechanisms with control over brain age and region. Ex vivo OGD impacted cortical and striatal brain tissue differently, aligning with preexisting data generated in in vivo models. These data motivate the need to account for both brain region and age when investigating mechanisms of injury and designing potential therapies for cerebral ischemia.

12.
Bioeng Transl Med ; 7(2): e10265, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35600642

RESUMO

Organotypic brain slice models are an ideal technological platform to investigate therapeutic options for hypoxic-ischemic (HI) brain injury, a leading cause of morbidity and mortality in neonates. The brain exhibits regional differences in the response to HI injury in vivo. This can be modeled using organotypic brain slices, which maintain three-dimensional regional structures and reflect the regional differences in injury response. Here, we developed an organotypic whole hemisphere (OWH) slice culture model of HI injury using the gyrencephalic ferret brain at a developmental stage equivalent to a full-term human infant in order to better probe region-specific cellular responses to injury. Each slice encompassed the cortex, corpus callosum, subcortical white matter, hippocampus, basal ganglia, and thalamus. Regional responses to treatment with either erythropoietin (Epo) or the ketone body acetoacetate (AcAc) were highly heterogenous. While both treatments suppressed global injury responses and oxidative stress, significant neuroprotection was only seen in a subset of regions, with others displaying no response or potential exacerbation of injury. Similar regional heterogeneity was seen in the morphology and response of microglia to injury and treatment, which mirrored those seen after injury in vivo. Within each region, machine-learning-based classification of microglia morphological shifts in response to injury predicted the neuroprotective response to each therapy, with different morphologies associated with different treatment responses. This suggests that the ferret OWH slice culture model provides a platform for examining regional responses to injury in the gyrencephalic brain, as well as for screening combinations of therapeutics to provide global neuroprotection after injury.

13.
Annu Rev Chem Biomol Eng ; 13: 325-346, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35320699

RESUMO

Brain disease remains a significant health, social, and economic burden with a high failure rate of translation of therapeutics to the clinic. Nanotherapeutics have represented a promising area of technology investment to improve drug bioavailability and delivery to the brain, with several successes for nanotherapeutic use for central nervous system disease that are currently in the clinic. However, renewed and continued research on the treatment of neurological disorders is critically needed. We explore the challenges of drug delivery to the brain and the ways in which nanotherapeutics can overcome these challenges. We provide a summary and overview of general design principles that can be applied to nanotherapeutics for uptake and penetration in the brain. We next highlight remaining questions that limit the translational potential of nanotherapeutics for application in the clinic. Lastly, we provide recommendations for ongoing preclinical research to improve the overall success of nanotherapeutics against neurological disease.


Assuntos
Nanopartículas , Doenças do Sistema Nervoso , Encéfalo , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina
14.
Dev Neurosci ; 44(4-5): 233-245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35134797

RESUMO

The gyrencephalic ferret brain is an excellent model in which to study hypoxia-ischemia (HI), a significant contributor to neurological injury in neonates. Vitamin E, an essential fat-soluble antioxidant, reduces oxidative stress and inflammation in both animal models and human infants. The aim of this study was to assess the effects of vitamin E after oxygen-glucose deprivation (OGD) in an organotypic ferret brain slice model of neonatal HI. We hypothesized that vitamin E would decrease cytotoxicity, inflammation, and oxidative stress in OGD-exposed brain slices. Term-equivalent ferrets were sacrificed at postnatal (P) day 21-23 and 300 µM whole-hemisphere brain slices were obtained. During a 24-h rest period, slices were cultured in either nontreated control conditions or with erastin, a promotor of oxidative stress. Slices were then exposed to 2 h of OGD followed by vitamin E (25-100 IU/kg), erastin (10 µM), or ferrostatin (1 µM), an inhibitor of ferroptosis. Relative cytotoxicity was determined using a lactate dehydrogenase assay, cell death was quantified via nuclear propidium iodide staining, oxidative stress was quantified via cellular glutathione (GSH) levels, and target genes responsive to oxidative stress and inflammation were evaluated by qRT-PCR. OGD increased cytotoxicity, which was significantly reduced by treatment with vitamin E. Vitamin E also preserved GSH after OGD and decreased amplification of certain markers of oxidative stress (CHAC1, SLC7A11) and inflammation (TNF-alpha, IL-8). Vitamin E remained protective after pretreatment with erastin and was more protective than ferrostatin, presumably due to its added anti-inflammatory properties. Results from the ferret whole-hemisphere OGD model support the premise that vitamin E neuroprotection is mediated by restoring GSH and acutely decreasing inflammation and oxidative stress after neonatal HI.


Assuntos
Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Furões/metabolismo , Glucose , Hipocampo/metabolismo , Humanos , Hipóxia/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Recém-Nascido , Inflamação/metabolismo , Isquemia , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Oxigênio/metabolismo , Vitamina E/metabolismo , Vitamina E/farmacologia
15.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054800

RESUMO

Hypoxic-Ischemic Encephalopathy (HIE) in the brain is the leading cause of morbidity and mortality in neonates and can lead to irreparable tissue damage and cognition. Thus, investigating key mediators of the HI response to identify points of therapeutic intervention has significant clinical potential. Brain repair after HI requires highly coordinated injury responses mediated by cell-derived extracellular vesicles (EVs). Studies show that stem cell-derived EVs attenuate the injury response in ischemic models by releasing neuroprotective, neurogenic, and anti-inflammatory factors. In contrast to 2D cell cultures, we successfully isolated and characterized EVs from whole brain rat tissue (BEV) to study the therapeutic potential of endogenous EVs. We showed that BEVs decrease cytotoxicity in an ex vivo oxygen glucose deprivation (OGD) brain slice model of HI in a dose- and time-dependent manner. The minimum therapeutic dosage was determined to be 25 µg BEVs with a therapeutic application time window of 4-24 h post-injury. At this therapeutic dosage, BEV treatment increased anti-inflammatory cytokine expression. The morphology of microglia was also observed to shift from an amoeboid, inflammatory phenotype to a restorative, anti-inflammatory phenotype between 24-48 h of BEV exposure after OGD injury, indicating a shift in phenotype following BEV treatment. These results demonstrate the use of OWH brain slices to facilitate understanding of BEV activity and therapeutic potential in complex brain pathologies for treating neurological injury in neonates.


Assuntos
Isquemia Encefálica/terapia , Encéfalo/metabolismo , Encéfalo/patologia , Vesículas Extracelulares/metabolismo , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Forma Celular , Sobrevivência Celular , Vesículas Extracelulares/ultraestrutura , Feminino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley
16.
Nat Rev Mater ; 7(4): 314-331, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38464996

RESUMO

Despite the rising global incidence of central nervous system (CNS) disorders, CNS drug development remains challenging, with high costs, long pathways to clinical use and high failure rates. The CNS is highly protected by physiological barriers, in particular, the blood-brain barrier and the blood-cerebrospinal fluid barrier, which limit access of most drugs. Biomaterials can be designed to bypass or traverse these barriers, enabling the controlled delivery of drugs into the CNS. In this Review, we first examine the effects of normal and diseased CNS physiology on drug delivery to the brain and spinal cord. We then discuss CNS drug delivery designs and materials that are administered systemically, directly to the CNS, intranasally or peripherally through intramuscular injections. Finally, we highlight important challenges and opportunities for materials design for drug delivery to the CNS and the anticipated clinical impact of CNS drug delivery.

17.
Biomaterials ; 277: 121086, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34481289

RESUMO

Drug delivery to the brain is limited by poor penetration of pharmaceutical agents across the blood-brain barrier (BBB), within the brain parenchyma, and into specific cells of interest. Nanotechnology can overcome these barriers, but its ability to do so is dependent on nanoparticle physicochemical properties including surface chemistry. Surface chemistry can be determined by a number of factors, including by the presence of stabilizing surfactant molecules introduced during the formulation process. Nanoparticles coated with poloxamer 188 (F68), poloxamer 407 (F127), and polysorbate 80 (P80) have demonstrated uptake in BBB endothelial cells and enhanced accumulation within the brain. However, the impact of surfactants on nanoparticle fate, and specifically on brain extracellular diffusion or intracellular targeting, must be better understood to design nanotherapeutics to efficiently overcome drug delivery barriers in the brain. Here, we evaluated the effect of the biocompatible and commonly used surfactants cholic acid (CHA), F68, F127, P80, and poly (vinyl alcohol) (PVA) on poly (lactic-co-glycolic acid)-poly (ethylene glycol) (PLGA-PEG) nanoparticle transport to and within the brain. The inclusion of these surfactant molecules decreases diffusive ability through brain tissue, reflecting the surfactant's role in encouraging cellular interaction at short length and time scales. After in vivo administration, PLGA-PEG/P80 nanoparticles demonstrated enhanced penetration across the BBB and subsequent internalization within neurons and microglia. Surfactants incorporated into the formulation of PLGA-PEG nanoparticles therefore represent an important design parameter for controlling nanoparticle fate within the brain.


Assuntos
Nanopartículas , Polímeros , Encéfalo , Portadores de Fármacos , Células Endoteliais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Tensoativos
18.
Pharmaceutics ; 13(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34452092

RESUMO

Neonatal hypoxic-ischemic encephalopathy is the leading cause of permanent brain injury in term newborns and currently has no cure. Catalase, an antioxidant enzyme, is a promising therapeutic due to its ability to scavenge toxic reactive oxygen species and improve tissue oxygen status. However, upon in vivo administration, catalase is subject to a short half-life, rapid proteolytic degradation, immunogenicity, and an inability to penetrate the brain. Polymeric nanoparticles can improve pharmacokinetic properties of therapeutic cargo, although encapsulation of large proteins has been challenging. In this paper, we investigated hydrophobic ion pairing as a technique for increasing the hydrophobicity of catalase and driving its subsequent loading into a poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticle. We found improved formation of catalase-hydrophobic ion complexes with dextran sulfate (DS) compared to sodium dodecyl sulfate (SDS) or taurocholic acid (TA). Molecular dynamics simulations in a model system demonstrated retention of native protein structure after complexation with DS, but not SDS or TA. Using DS-catalase complexes, we developed catalase-loaded PLGA-PEG nanoparticles and evaluated their efficacy in the Vannucci model of unilateral hypoxic-ischemic brain injury in postnatal day 10 rats. Catalase-loaded nanoparticles retained enzymatic activity for at least 24 h in serum-like conditions, distributed through injured brain tissue, and delivered a significant neuroprotective effect compared to saline and blank nanoparticle controls. These results encourage further investigation of catalase and PLGA-PEG nanoparticle-mediated drug delivery for the treatment of neonatal brain injury.

19.
ACS Nano ; 15(5): 8559-8573, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33969999

RESUMO

Brain extracellular matrix (ECM) structure mediates many aspects of neural development and function. Probing structural changes in brain ECM could thus provide insights into mechanisms of neurodevelopment, the loss of neural function in response to injury, and the detrimental effects of pathological aging and neurological disease. We demonstrate the ability to probe changes in brain ECM microstructure using multiple particle tracking (MPT). We performed MPT of colloidally stable polystyrene nanoparticles in organotypic rat brain slices collected from rats aged 14-70 days old. Our analysis revealed an inverse relationship between nanoparticle diffusive ability in the brain extracellular space and age. Additionally, the distribution of effective ECM pore sizes in the cortex shifted to smaller pores throughout development. We used the raw data and features extracted from nanoparticle trajectories to train a boosted decision tree capable of predicting chronological age with high accuracy. Collectively, this work demonstrates the utility of combining MPT with machine learning for measuring changes in brain ECM structure and predicting associated complex features such as chronological age. This will enable further understanding of the roles brain ECM play in development and aging and the specific mechanisms through which injuries cause aberrant neuronal function. Additionally, this approach has the potential to develop machine learning models capable of detecting the presence of injury or indicating the extent of injury based on changes in the brain microenvironment microstructure.


Assuntos
Encéfalo , Matriz Extracelular , Envelhecimento , Animais , Neurogênese , Neurônios , Ratos
20.
AIChE J ; 67(12)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35399334

RESUMO

Translation of nanotherapeutics from preclinical research to clinical application is difficult due to the complex and dynamic interaction space between the nanotherapeutic and the brain environment. To improve translation, increased insight into nanoformulation-brain interactions in preclinical research is necessary. We developed a nanoformulation-brain database and wrote queries to connect the complex physical, chemical, and biological features of neurotherapeutics based on experimental data. We queried the database to select nanoformulations based on specific physical characteristics that enable effective penetration within the brain, including size, polydispersity index, and zeta potential. Additionally, we demonstrate the ability to query the database to return select nanoformulation characteristics, including nanoformulation methodology or methodological variables such as surfactant, polymer, drug loading, and sonication times. Finally, we show the capacity of our database to produce correlations relating nanoparticle formulation parameters to biological outcomes, including nanotherapeutic impact on cell viability in cultured brain slices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA