Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 72(6): 1461-1478, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36472588

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is a lethal and metastatic malignancy resistant to therapy. Elucidating how pancreatic tumor-specific T cells differentiate and are maintained in vivo could inform novel therapeutic avenues to promote T cell antitumor activity. Here, we show that the spleen is a critical site harboring tumor-specific CD8 T cells that functionally segregate based on differential Cxcr3 and Klrg1 expression. Cxcr3+ Klrg1- T cells express the memory stem cell marker Tcf1, whereas Cxcr3-Klrg1 + T cells express GzmB consistent with terminal differentiation. We identify a Cxcr3+ Klrg1+ intermediate T cell subpopulation in the spleen that is highly enriched for tumor specificity. However, tumor-specific T cells infiltrating primary tumors progressively downregulate both Cxcr3 and Klrg1 while upregulating exhaustion markers PD-1 and Lag-3. We show that antigen-specific T cell infiltration into PDA is Cxcr3 independent. Further, Cxcr3-deficiency results in enhanced antigen-specific T cell IFNγ production in primary tumors, suggesting that Cxcr3 promotes loss of effector function. Ultimately, however, Cxcr3 was critical for mitigating cancer cell dissemination following immunotherapy with CD40 agonist + anti-PD-L1 or T cell receptor engineered T cell therapy targeting mesothelin. In the absence of Cxcr3, splenic Klrg1 + GzmB + antitumor T cells wain while pancreatic cancer disseminates suggesting a role for these cells in eliminating circulating metastatic tumor cells. Intratumoral myeloid cells are poised to produce Cxcl10, whereas splenic DC subsets produce Cxcl9 following immunotherapy supporting differential roles for these chemokines on T cell differentiation. Together, our study supports that Cxcr3 mitigates tumor cell dissemination by impacting peripheral T cell fate rather than intratumoral T cell trafficking.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptores CXCR3 , Neoplasias Pancreáticas
2.
Cell Rep ; 39(2): 110575, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417710

RESUMO

Human brown adipose tissue (BAT) undergoes progressive involution. This involution process is not recapitulated in rodents, and the underlying mechanisms are poorly understood. Here we show that the interscapular BAT (iBAT) of rabbits whitens rapidly during early adulthood. The transcriptomic remodeling and identity switch of mature adipocytes are accompanied by loss of brown adipogenic competence of progenitors. Single-cell RNA sequencing reveals that rabbit and human iBAT progenitors highly express the FSTL1 gene. When iBAT involutes in rabbits, adipocyte progenitors reduce FSTL1 expression and are refractory to brown adipogenic recruitment. Conversely, FSTL1 is constitutively expressed in mouse iBAT to sustain WNT signaling and prevent involution. Progenitor incompetence and iBAT paucity can be induced in mice by genetic deletion of the Fstl1 gene or ablation of Fstl1+ progenitors. Our results highlight the hierarchy and dynamics of the BAT progenitor compartment and implicate the functional incompetence of FSTL1-expressing progenitors in BAT involution.


Assuntos
Tecido Adiposo Marrom , Proteínas Relacionadas à Folistatina , Adipócitos , Adipócitos Marrons/metabolismo , Adipogenia , Tecido Adiposo Marrom/metabolismo , Animais , Proteínas Relacionadas à Folistatina/genética , Humanos , Camundongos , Coelhos , Termogênese
3.
Sci Rep ; 12(1): 2188, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140280

RESUMO

Although many studies have observed genome-wide host transposon expression alteration during viral infection, the mechanisms of induction and the impact on the host remain unclear. Utilizing recently published influenza A virus (IAV) time series data and ENCODE functional genomics data, we characterized virus induced host differentially expressed transposons (virus-induced-TE) by investigating genome-wide spatial and functional relevance between the virus-induced-TEs and epigenomic markers (e.g. histone modification and chromatin remodelers). We found that a significant fraction of virus-induced-TEs are derived from host enhancer regions, where CHD4 binding and/or H3K27ac occupancy is high or H3K9me3 occupancy is low. By overlapping virus-induced-TEs to human enhancer RNAs (eRNAs), we discovered that a proportion of virus-induced-TEs are either eRNAs or part of enhancer RNAs. Upon further analysis of the eRNA targeted genes, we found that the virus-induced-TE related eRNA targets are overrepresented in differentially expressed host genes of IAV infected samples. Our results suggest that changing chromatin accessibility from repressive to permissive in the transposon docked enhancer regions to regulate host downstream gene expression is potentially one of the virus and host cell interaction mechanisms, where transposons are likely important regulatory genomic elements. Our study provides a new insight into the mechanisms of virus-host interaction and may lead to novel strategies for prevention and therapeutics of IAV and other virus infectious diseases.


Assuntos
Elementos de DNA Transponíveis/fisiologia , Elementos Facilitadores Genéticos/fisiologia , Vírus da Influenza A/genética , RNA/fisiologia , Montagem e Desmontagem da Cromatina/fisiologia , Regulação da Expressão Gênica , Interações entre Hospedeiro e Microrganismos/genética , Humanos
4.
Cell Host Microbe ; 29(12): 1815-1827.e6, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34731647

RESUMO

Laboratory mice comprise an expeditious model for preclinical vaccine testing; however, vaccine immunogenicity in these models often inadequately translates to humans. Reconstituting physiologic microbial experience to specific pathogen-free (SPF) mice induces durable immunological changes that better recapitulate human immunity. We examined whether mice with diverse microbial experience better model human responses post vaccination. We co-housed laboratory mice with pet-store mice, which have varied microbial exposures, and then assessed immune responses to influenza vaccines. Human transcriptional responses to influenza vaccination are better recapitulated in co-housed mice. Although SPF and co-housed mice were comparably susceptible to acute influenza infection, vaccine-induced humoral responses were dampened in co-housed mice, resulting in poor control upon challenge. Additionally, protective heterosubtypic T cell immunity was compromised in co-housed mice. Because SPF mice exaggerated humoral and T cell protection upon influenza vaccination, reconstituting microbial experience in laboratory mice through co-housing may better inform preclinical vaccine testing.


Assuntos
Imunogenicidade da Vacina , Vacinas contra Influenza/imunologia , Animais , Feminino , Humanos , Imunidade Humoral , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vacinação
5.
PLoS Pathog ; 17(1): e1009292, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33507952

RESUMO

The human airway epithelium is the initial site of SARS-CoV-2 infection. We used flow cytometry and single cell RNA-sequencing to understand how the heterogeneity of this diverse cell population contributes to elements of viral tropism and pathogenesis, antiviral immunity, and treatment response to remdesivir. We found that, while a variety of epithelial cell types are susceptible to infection, ciliated cells are the predominant cell target of SARS-CoV-2. The host protease TMPRSS2 was required for infection of these cells. Importantly, remdesivir treatment effectively inhibited viral replication across cell types, and blunted hyperinflammatory responses. Induction of interferon responses within infected cells was rare and there was significant heterogeneity in the antiviral gene signatures, varying with the burden of infection in each cell. We also found that heavily infected secretory cells expressed abundant IL-6, a potential mediator of COVID-19 pathogenesis.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , COVID-19/imunologia , COVID-19/virologia , SARS-CoV-2/fisiologia , Tropismo Viral , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , COVID-19/genética , Epitélio/imunologia , Epitélio/virologia , Humanos , Interferons/genética , Interferons/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Pulmão/imunologia , Pulmão/virologia , SARS-CoV-2/efeitos dos fármacos , Tropismo Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
6.
bioRxiv ; 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33106802

RESUMO

The human airway epithelium is the initial site of SARS-CoV-2 infection. We used flow cytometry and single cell RNA-sequencing to understand how the heterogeneity of this diverse cell population contributes to elements of viral tropism and pathogenesis, antiviral immunity, and treatment response to remdesivir. We found that, while a variety of epithelial cell types are susceptible to infection, ciliated cells are the predominant cell target of SARS-CoV-2. The host protease TMPRSS2 was required for infection of these cells. Importantly, remdesivir treatment effectively inhibited viral replication across cell types, and blunted hyperinflammatory responses. Induction of interferon responses within infected cells was rare and there was significant heterogeneity in the antiviral gene signatures, varying with the burden of infection in each cell. We also found that heavily infected secretory cells expressed abundant IL-6, a potential mediator of COVID-19 pathogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA