Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
PLoS One ; 19(4): e0301989, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683764

RESUMO

Somatic Y chromosome loss in hematopoietic cells is associated with higher mortality in men. However, the status of the Y chromosome in cancer tissue is not fully known due to technical limitations, such as difficulties in labelling and sequencing DNA from the Y chromosome. We have developed a system to quantify Y chromosome gain or loss in patient-derived prostate cancer organoids. Using our system, we observed Y chromosome loss in 4 of the 13 (31%) patient-derived metastatic castration-resistant prostate cancer (mCRPC) organoids; interestingly, loss of Yq (long arm of the Y chromosome) was seen in 38% of patient-derived organoids. Additionally, potential associations were observed between mCRPC and Y chromosome nullisomy. The prevalence of Y chromosome loss was similar in primary and metastatic tissue, suggesting that Y chromosome loss is an early event in prostate cancer evolution and may not a result of drug resistance or organoid derivation. This study reports quantification of Y chromosome loss and gain in primary and metastatic prostate cancer tissue and lays the groundwork for further studies investigating the clinical relevance of Y chromosome loss or gain in mCRPC.


Assuntos
Coloração Cromossômica , Cromossomos Humanos Y , Metástase Neoplásica , Masculino , Humanos , Cromossomos Humanos Y/genética , Metástase Neoplásica/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Organoides/patologia , Deleção Cromossômica
2.
Clin Cancer Res ; 30(10): 2272-2285, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488813

RESUMO

PURPOSE: Develop and deploy a robust discovery platform that encompasses heterogeneity, clinical annotation, and molecular characterization and overcomes the limited availability of prostate cancer models. This initiative builds on the rich MD Anderson (MDA) prostate cancer (PCa) patient-derived xenograft (PDX) resource to complement existing publicly available databases by addressing gaps in clinically annotated models reflecting the heterogeneity of potentially lethal and lethal prostate cancer. EXPERIMENTAL DESIGN: We performed whole-genome, targeted, and RNA sequencing in representative samples of the same tumor from 44 PDXs derived from 38 patients linked to donor tumor metadata and corresponding organoids. The cohort includes models derived from different morphologic groups, disease states, and involved organ sites (including circulating tumor cells), as well as paired samples representing heterogeneity or stages before and after therapy. RESULTS: The cohort recapitulates clinically reported alterations in prostate cancer genes, providing a data resource for clinical and molecular interrogation of suitable experimental models. Paired samples displayed conserved molecular alteration profiles, suggesting the relevance of other regulatory mechanisms (e.g., epigenomic) influenced by the microenvironment and/or treatment. Transcriptomically, models were grouped on the basis of morphologic classification. DNA damage response-associated mechanisms emerged as differentially regulated between adenocarcinoma and neuroendocrine prostate cancer in a cross-interrogation of PDX/patient datasets. CONCLUSIONS: We addressed the gap in clinically relevant prostate cancer models through comprehensive molecular characterization of MDA PCa PDXs, providing a discovery platform that integrates with patient data and benchmarked to therapeutically relevant consensus clinical groupings. This unique resource supports robust hypothesis generation and testing from basic, translational, and clinical perspectives.


Assuntos
Neoplasias da Próstata , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Masculino , Animais , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Biomarcadores Tumorais/genética , Xenoenxertos , Regulação Neoplásica da Expressão Gênica , Perfilação da Expressão Gênica
4.
Cancer Discov ; 14(1): 49-65, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-37849038

RESUMO

There is a continuing debate about the proportion of cancer patients that benefit from precision oncology, attributable in part to conflicting views as to which molecular alterations are clinically actionable. To quantify the expansion of clinical actionability since 2017, we annotated 47,271 solid tumors sequenced with the MSK-IMPACT clinical assay using two temporally distinct versions of the OncoKB knowledge base deployed 5 years apart. Between 2017 and 2022, we observed an increase from 8.9% to 31.6% in the fraction of tumors harboring a standard care (level 1 or 2) predictive biomarker of therapy response and an almost halving of tumors carrying nonactionable drivers (44.2% to 22.8%). In tumors with limited or no clinical actionability, TP53 (43.2%), KRAS (19.2%), and CDKN2A (12.2%) were the most frequently altered genes. SIGNIFICANCE: Although clear progress has been made in expanding the availability of precision oncology-based treatment paradigms, our results suggest a continued unmet need for innovative therapeutic strategies, particularly for cancers with currently undruggable oncogenic drivers. See related commentary by Horak and Fröhling, p. 18. This article is featured in Selected Articles from This Issue, p. 5.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Mutação , Medicina de Precisão/métodos , Oncologia/métodos
5.
Clin Cancer Res ; 30(1): 106-115, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37910594

RESUMO

PURPOSE: Isocitrate dehydrogenase-mutant (IDH-mt) gliomas are incurable primary brain tumors characterized by a slow-growing phase over several years followed by a rapid-growing malignant phase. We hypothesized that tumor volume growth rate (TVGR) on MRI may act as an earlier measure of clinical benefit during the active surveillance period. EXPERIMENTAL DESIGN: We integrated three-dimensional volumetric measurements with clinical, radiologic, and molecular data in a retrospective cohort of IDH-mt gliomas that were observed after surgical resection in order to understand tumor growth kinetics and the impact of molecular genetics. RESULTS: Using log-linear mixed modeling, the entire cohort (n = 128) had a continuous %TVGR per 6 months of 10.46% [95% confidence interval (CI), 9.11%-11.83%] and a doubling time of 3.5 years (95% CI, 3.10-3.98). High molecular grade IDH-mt gliomas, defined by the presence of homozygous deletion of CDKN2A/B, had %TVGR per 6 months of 19.17% (95% CI, 15.57%-22.89%) which was significantly different from low molecular grade IDH-mt gliomas with a growth rate per 6 months of 9.54% (95% CI, 7.32%-11.80%; P < 0.0001). Using joint modeling to comodel the longitudinal course of TVGR and overall survival, we found each one natural logarithm tumor volume increase resulted in more than a 3-fold increase in risk of death (HR = 3.83; 95% CI, 2.32-6.30; P < 0.0001). CONCLUSIONS: TVGR may be used as an earlier measure of clinical benefit and correlates well with the WHO 2021 molecular classification of gliomas and survival. Incorporation of TVGR as a surrogate endpoint into future prospective studies of IDH-mt gliomas may accelerate drug development.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Estudos Retrospectivos , Estudos Prospectivos , Carga Tumoral , Homozigoto , Conduta Expectante , Deleção de Sequência , Mutação , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/metabolismo , Isocitrato Desidrogenase/genética
7.
Neurology ; 101(7): e710-e716, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37344228

RESUMO

BACKGROUND AND OBJECTIVES: Primary CNS lymphoma (PCNSL), a rare CNS malignancy, is usually treated with high-dose methotrexate in the first-line setting, typically followed by consolidation therapy. Due to the broad range of currently available treatments for PCNSL, comparability in long-term follow-up studies is limited, and data are scattered across small studies. METHODS: In this study, we report the long-term survival of patients with newly diagnosed immunocompetent PCNSL, enrolled in a phase II trial from June 2005 to September 2011. Patients were treated using rituximab, methotrexate, vincristine, and procarbazine (R-MVP) chemotherapy followed by high-dose chemotherapy (HDC) and autologous stem cell transplant (ASCT) in those with partial or complete response to R-MVP. In a post hoc analysis, clinical and imaging features were evaluated in those still alive. RESULTS: 26 of 32 patients underwent HDC-ASCT consolidation. Of them, 3 patients died of treatment-related toxicity and 2 due to disease progression within 1 year of ASCT. None of the remaining 21 patients had disease progression with a median follow-up of 12.1 years and were included in the analysis. Compared with the post-HDC-ASCT assessment, at the last follow-up, there was no significant difference in the median Karnofsky Performance Status (80 [range: 60-100] vs 90 [range: 70-100]), the median Neurologic Assessment in Neuro-Oncology score (1 [range: 0-4] vs 1 [range: 0-5]), and leukoencephalopathy score (1 [range: 0-3] vs 1 [range: 1-4]). DISCUSSION: Long-term follow-up demonstrated that treatment was well tolerated in most patients enrolled in this study, with stable leukoencephalopathy on imaging and stable clinical performance status. Disease recurrence was not observed beyond 2 years after HDC-ASCT consolidation.


Assuntos
Neoplasias do Sistema Nervoso Central , Transplante de Células-Tronco Hematopoéticas , Leucoencefalopatias , Linfoma , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias do Sistema Nervoso Central/terapia , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Terapia Combinada , Progressão da Doença , Transplante de Células-Tronco Hematopoéticas/métodos , Leucoencefalopatias/tratamento farmacológico , Linfoma/tratamento farmacológico , Metotrexato , Recidiva Local de Neoplasia/tratamento farmacológico , Rituximab/uso terapêutico , Transplante Autólogo , Vincristina/uso terapêutico
8.
Eur Urol ; 83(1): 29-38, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36115772

RESUMO

BACKGROUND: Tumor-only genomic profiling is an important tool in therapeutic management of men with prostate cancer. Since clinically actionable germline variants may be reflected in tumor profiling, it is critical to identify which variants have a higher risk of being germline in origin to better counsel patients and prioritize genetic testing. OBJECTIVE: To determine when variants found on tumor-only sequencing of prostate cancers should prompt confirmatory germline testing. DESIGN, SETTING, AND PARTICIPANTS: Men with prostate cancer who underwent both tumor and germline sequencing at Memorial Sloan Kettering Cancer Center from January 1, 2015 to January 31, 2020 were evaluated. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Tumor and germline profiles were analyzed for pathogenic and likely pathogenic ("pathogenic") variants in 60 moderate- or high-penetrance genes associated with cancer predisposition. The germline probability (germline/germline + somatic) of a variant was calculated for each gene. Clinical and pathologic factors were analyzed as potential modifiers of germline probability. RESULTS AND LIMITATIONS: Of the 1883 patients identified, 1084 (58%) had a somatic or germline pathogenic variant in one of 60 cancer susceptibility genes, and of them, 240 (22%) had at least one germline variant. Overall, the most frequent variants were in TP53, PTEN, APC, BRCA2, RB1, ATM, and CHEK2. Variants in TP53, PTEN, or RB1 were identified in 746 (40%) patients and were exclusively somatic. Variants with the highest germline probabilities were in PALB2 (69%), MITF (62%), HOXB13 (60%), CHEK2 (55%), BRCA1 (55%), and BRCA2 (47%), and the overall germline probability of a variant in any DNA damage repair gene was 40%. Limitations were that most of the men included in the cohort had metastatic disease, and different thresholds for pathogenicity exist for somatic and germline variants. CONCLUSIONS: Of patients with pathogenic variants found on prostate tumor sequencing, 22% had clinically actionable germline variants, for which the germline probabilities varied widely by gene. Our results provide an evidenced-based clinical framework to prioritize referral to genetic counseling following tumor-only sequencing. PATIENT SUMMARY: Patients with advanced prostate cancer are recommended to have germline genetic testing. Genetic sequencing of a patient's prostate tumor may also identify certain gene variants that are inherited. We found that patients who had variants in certain genes, such as ones that function in DNA damage repair, identified in their prostate tumor sequencing, had a high risk for having an inherited cancer syndrome.


Assuntos
Mutação em Linhagem Germinativa , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Testes Genéticos , Análise de Sequência , Genômica , Predisposição Genética para Doença
9.
Nat Commun ; 13(1): 6513, 2022 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-36316305

RESUMO

Tumors initiate by mutations in cancer cells, and progress through interactions of the cancer cells with non-malignant cells of the tumor microenvironment. Major players in the tumor microenvironment are cancer-associated fibroblasts (CAFs), which support tumor malignancy, and comprise up to 90% of the tumor mass in pancreatic cancer. CAFs are transcriptionally rewired by cancer cells. Whether this rewiring is differentially affected by different mutations in cancer cells is largely unknown. Here we address this question by dissecting the stromal landscape of BRCA-mutated and BRCA Wild-type pancreatic ductal adenocarcinoma. We comprehensively analyze pancreatic cancer samples from 42 patients, revealing different CAF subtype compositions in germline BRCA-mutated vs. BRCA Wild-type tumors. In particular, we detect an increase in a subset of immune-regulatory clusterin-positive CAFs in BRCA-mutated tumors. Using cancer organoids and mouse models we show that this process is mediated through activation of heat-shock factor 1, the transcriptional regulator of clusterin. Our findings unravel a dimension of stromal heterogeneity influenced by germline mutations in cancer cells, with direct implications for clinical research.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Clusterina , Fatores de Transcrição de Choque Térmico , Neoplasias Pancreáticas , Animais , Camundongos , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Ductal Pancreático/patologia , Clusterina/genética , Clusterina/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/genética , Humanos , Neoplasias Pancreáticas
10.
Cancer Discov ; 12(11): 2552-2565, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36048199

RESUMO

Accurate ancestry inference is critical for identifying genetic contributors of cancer disparities among populations. Although methods to infer genetic ancestry have historically relied upon genome-wide markers, the adaptation to targeted clinical sequencing panels presents an opportunity to incorporate ancestry inference into routine diagnostic workflows. We show that global ancestral contributions and admixture of continental populations can be quantitatively inferred using markers captured by the MSK-IMPACT clinical panel. In a pan-cancer cohort of 45,157 patients, we observed differences by ancestry in the frequency of somatic alterations, recapitulating known associations and revealing novel associations. Despite the comparable overall prevalence of driver alterations by ancestry group, the proportion of patients with clinically actionable alterations was lower for African (30%) compared with European (33%) ancestry. Although this result is largely explained by population-specific cancer subtype differences, it reveals an inequity in the degree to which different populations are served by existing precision oncology interventions. SIGNIFICANCE: We performed a comprehensive analysis of ancestral associations with somatic mutations in a real-world pan-cancer cohort, including >5,000 non-European individuals. Using an FDA-authorized tumor sequencing panel and an FDA-recognized oncology knowledge base, we detected differences in the prevalence of clinically actionable alterations, potentially contributing to health care disparities affecting underrepresented populations. This article is highlighted in the In This Issue feature, p. 2483.


Assuntos
Neoplasias , População Branca , Humanos , Genética Populacional , Polimorfismo de Nucleotídeo Único , Medicina de Precisão
11.
Mol Oncol ; 16(22): 3994-4010, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36087093

RESUMO

Loss of the histone demethylase KDM5D (lysine-specific demethylase 5D) leads to in vitro resistance of prostate cancer cells to androgen deprivation therapy (ADT) with and without docetaxel. We aimed to define downstream drivers of the KDM5D effect. Using chromatin immunoprecipitation sequencing (ChIP-seq) of the LNCaP cell line (androgen-sensitive human prostate adenocarcinoma) with and without silenced KDM5D, MYBL2-binding sites were analyzed. Associations between MYBL2 mRNA expression and clinical outcomes were assessed in cohorts of men with localized and metastatic hormone-sensitive prostate cancer. In vitro assays with silencing and overexpression of MYBL2 and KDM5D in androgen receptor (AR)-positive hormone-sensitive prostate cancer cell lines, LNCaP and LAPC4, were used to assess their influence on cellular proliferation, apoptosis, and cell cycle distribution, as well as sensitivity to androgen deprivation, docetaxel, and cabazitaxel. We found that silencing KDM5D increased histone H3 lysine K4 (H3K4) trimethylation and increased MYBL2 expression. KDM5D and MYBL2 were negatively correlated with some but not all clinical samples. Higher MYBL2 expression was associated with a higher rate of relapse in localized disease and poorer overall survival in men with metastatic disease in the CHAARTED trial. Lower MYBL2 levels enhanced LNCaP and LAPC4 sensitivity to androgen deprivation and taxanes. In vitro, modifications of KDM5D and MYBL2 altered cell cycle distribution and apoptosis in a cell line-specific manner. These results show that the transcription factor MYBL2 impacts in vitro hormone-sensitive prostate cancer sensitivity to androgen deprivation and taxanes, and lower levels are associated with better clinical outcomes in men with hormone-sensitive prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Docetaxel/farmacologia , Antagonistas de Androgênios/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Androgênios , Lisina , Taxoides/uso terapêutico , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/uso terapêutico , Histona Desmetilases , Transativadores , Proteínas de Ciclo Celular
12.
Neurology ; 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948444

RESUMO

OBJECTIVES: To report on the tolerability and efficacy of olaparib with temozolomide (TMZ) for glioma METHODS: Single-center retrospective series of glioma patients treated with olaparib/TMZ September 2018-December 2021 RESULTS: Twenty patients (median age: 42, median Karnofsky Performance Status: 90) received olaparib/TMZ for diagnoses of IDH-mutant oligodendroglioma (n=5), IDH-mutant astrocytoma grade 2-3 (n=4), IDH-mutant astrocytoma grade 4 (n=7), or IDH-wildtype glioma (n=4). One patient was treated upfront and 19 at recurrence (median=3). Olaparib 150mg was administered three times/week concurrent with TMZ 50-75mg/m2 daily. Fatigue, gastrointestinal symptoms, and hematologic toxicity were common. 6/20 patients required dose reduction (n=4) or discontinuation (n=2) due to toxicity. Radiographic response was evaluable in 16 and observed (complete + partial) in 4/8 with IDH-mutant grade 2-3 glioma. No responses were seen in patients with grade 4 IDH-mutant astrocytomas (0/5) or IDH-wildtype gliomas (0/3). Progression-free survival was 7.8, 1.3, and 2.0 months, respectively. DISCUSSION: Olaparib/TMZ resulted in objective radiographic response in 50% of evaluable patients with recurrent IDH-mutant grade 2-3 gliomas with encouraging PFS and manageable toxicity. This supports a prospective trial of olaparib/TMZ for this population. CLASSIFICATION OF EVIDENCE: This case series provides Class IV evidence that treatment with olaparib/TMZ may result in radiographic response in patients with glioma.

13.
Clin Cancer Res ; 28(16): 3603-3617, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35670774

RESUMO

PURPOSE: Oncogenic alterations of the PI3K/AKT pathway occur in >40% of patients with metastatic castration-resistant prostate cancer, predominantly via PTEN loss. The significance of other PI3K pathway components in prostate cancer is largely unknown. EXPERIMENTAL DESIGN: Patients in this study underwent tumor sequencing using the MSK-IMPACT clinical assay to capture single-nucleotide variants, insertions, and deletions; copy-number alterations; and structural rearrangements, or were profiled through The Cancer Genome Atlas. The association between PIK3R1 alteration/expression and survival was evaluated using univariable and multivariable Cox proportional-hazards regression models. We used the siRNA-based knockdown of PIK3R1 for functional studies. FDG-PET/CT examinations were performed with a hybrid positron emission tomography (PET)/CT scanner for some prostate cancer patients in the MSK-IMPACT cohort. RESULTS: Analyzing 1,417 human prostate cancers, we found a significant enrichment of PIK3R1 alterations in metastatic cancers compared with primary cancers. PIK3R1 alterations or reduced mRNA expression tended to be associated with worse clinical outcomes in prostate cancer, particularly in primary disease, as well as in breast, gastric, and several other cancers. In prostate cancer cell lines, PIK3R1 knockdown resulted in increased cell proliferation and AKT activity, including insulin-stimulated AKT activity. In cell lines and organoids, PIK3R1 loss/mutation was associated with increased sensitivity to AKT inhibitors. PIK3R1-altered patient prostate tumors had increased uptake of the glucose analogue 18F-fluorodeoxyglucose in PET imaging, suggesting increased glycolysis. CONCLUSIONS: Our findings describe a novel genomic feature in metastatic prostate cancer and suggest that PIK3R1 alteration may be a key event for insulin-PI3K-glycolytic pathway regulation in prostate cancer.


Assuntos
Fosfatidilinositol 3-Quinases , Neoplasias da Próstata , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Glicólise , Humanos , Insulina/genética , Insulina/metabolismo , Masculino , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
14.
Cell ; 185(3): 563-575.e11, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35120664

RESUMO

Metastatic progression is the main cause of death in cancer patients, whereas the underlying genomic mechanisms driving metastasis remain largely unknown. Here, we assembled MSK-MET, a pan-cancer cohort of over 25,000 patients with metastatic diseases. By analyzing genomic and clinical data from this cohort, we identified associations between genomic alterations and patterns of metastatic dissemination across 50 tumor types. We found that chromosomal instability is strongly correlated with metastatic burden in some tumor types, including prostate adenocarcinoma, lung adenocarcinoma, and HR+/HER2+ breast ductal carcinoma, but not in others, including colorectal cancer and high-grade serous ovarian cancer, where copy-number alteration patterns may be established early in tumor development. We also identified somatic alterations associated with metastatic burden and specific target organs. Our data offer a valuable resource for the investigation of the biological basis for metastatic spread and highlight the complex role of chromosomal instability in cancer progression.


Assuntos
Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Estudos de Coortes , Feminino , Humanos , Masculino , Especificidade de Órgãos/genética , Estudos Prospectivos
15.
Cancer Immunol Res ; 10(3): 303-313, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35013003

RESUMO

Cancer immunotherapy can result in lasting tumor regression, but predictive biomarkers of treatment response remain ill-defined. Here, we performed single-cell proteomics, transcriptomics, and genomics on matched untreated and IL2 injected metastases from patients with melanoma. Lesions that completely regressed following intralesional IL2 harbored increased fractions and densities of nonproliferating CD8+ T cells lacking expression of PD-1, LAG-3, and TIM-3 (PD-1-LAG-3-TIM-3-). Untreated lesions from patients who subsequently responded with complete eradication of all tumor cells in all injected lesions (individuals referred to herein as "extreme responders") were characterized by proliferating CD8+ T cells with an exhausted phenotype (PD-1+LAG-3+TIM-3+), stromal B-cell aggregates, and expression of IFNγ and IL2 response genes. Loss of membranous MHC class I expression in tumor cells of untreated lesions was associated with resistance to IL2 therapy. We validated this finding in an independent cohort of metastatic melanoma patients treated with intralesional or systemic IL2. Our study suggests that intact tumor-cell antigen presentation is required for melanoma response to IL2 and describes a multidimensional and spatial approach to develop immuno-oncology biomarker hypotheses using routinely collected clinical biospecimens.


Assuntos
Interleucina-2 , Melanoma , Receptor Celular 2 do Vírus da Hepatite A , Humanos , Imunoterapia/métodos , Interleucina-2/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Receptor de Morte Celular Programada 1/metabolismo
16.
Clin Cancer Res ; 28(2): 318-326, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34667026

RESUMO

PURPOSE: Black men die from prostate cancer twice as often as White men, a disparity likely due to inherited genetics, modifiable cancer risk factors, and healthcare access. It is incompletely understood how and why tumor genomes differ by self-reported race and genetic ancestry. EXPERIMENTAL DESIGN: Among 2,069 men with prostate cancer (1,841 self-reported White, 63 Asian, 165 Black) with access to clinical-grade sequencing at the same cancer center, prevalence of tumor and germline alterations was assessed in cancer driver genes reported to have different alteration prevalence by race. RESULTS: Clinical characteristics such as prostate-specific antigen and age at diagnosis as well as cancer stage at sample procurement differed by self-reported race. However, most genomic differences persisted when adjusting for clinical characteristics. Tumors from Black men harbored fewer PTEN mutations and more AR alterations than those from White men. Tumors from Asian men had more FOXA1 mutations and more ZFHX3 alterations than White men. Despite fewer TP53 mutations, tumors from Black men had more aneuploidy, particularly chromosome arm 8q gains, an adverse prognostic factor. Genetic ancestry was associated with similar tumor alterations as self-reported race, but also with modifiable cancer risk factors. Community-level average income was associated with chr8q gains after adjusting for race and ancestry. CONCLUSIONS: Tumor genomics differed by race even after accounting for clinical characteristics. Equalizing access to care may not fully eliminate such differences. Therapies for alterations more common in racial minorities are needed. Tumor genomic differences should not be assumed to be entirely due to germline genetics.


Assuntos
Neoplasias da Próstata , População Branca , População Negra , Humanos , Masculino , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/genética , Fatores de Risco , Autorrelato
17.
Mol Oncol ; 16(13): 2451-2469, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34792282

RESUMO

Prostate cancer is a highly heterogeneous disease, understanding the crosstalk between complex genomic and epigenomic alterations will aid in developing targeted therapeutics. We demonstrate that, even though snail family transcriptional repressor 2 (SNAI2) is frequently amplified in prostate cancer, it is epigenetically silenced in this disease, with dynamic changes in SNAI2 levels showing distinct clinical relevance. Integrative clinical data from 18 prostate cancer cohorts and experimental evidence showed that gene fusion between transmembrane serine protease 2 (TMPRSS2) and ETS transcription factor ERG (ERG) (TMPRSS2-ERG fusion) is involved in the silencing of SNAI2. We created a silencer score to evaluate epigenetic repression of SNAI2, which can be reversed by treatment with DNA methyltransferase inhibitors and histone deacetylase inhibitors. Silencing of SNAI2 facilitated tumor cell proliferation and luminal differentiation. Furthermore, SNAI2 has a major influence on the tumor microenvironment by reactivating tumor stroma and creating an immunosuppressive microenvironment in prostate cancer. Importantly, SNAI2 expression levels in part determine sensitivity to the cancer drugs dasatinib and panobinostat. For the first time, we defined the distinct clinical relevance of SNAI2 expression at different disease stages. We elucidated how epigenetic silencing of SNAI2 controls the dynamic changes of SNAI2 expression that are essential for tumor initiation and progression and discovered that restoring SNAI2 expression by treatment with panobinostat enhances dasatinib sensitivity, indicating a new therapeutic strategy for prostate cancer.


Assuntos
Proteínas de Fusão Oncogênica , Neoplasias da Próstata , Fatores de Transcrição da Família Snail , Linhagem Celular Tumoral , Dasatinibe/uso terapêutico , Humanos , Masculino , Proteínas de Fusão Oncogênica/genética , Panobinostat/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Fatores de Transcrição da Família Snail/genética , Microambiente Tumoral
18.
Oncogene ; 41(5): 671-682, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34802033

RESUMO

Chromosome 8q gain is associated with poor clinical outcomes in prostate cancer, but the underlying biological mechanisms remain to be clarified. CSN5, a putative androgen receptor (AR) partner that is located on chromosome 8q, is the key subunit of the COP9 signalosome, which deactivates ubiquitin ligases. Deregulation of CSN5 could affect diverse cellular functions that contribute to tumor development, but there has been no comprehensive study of its function in prostate cancer. The clinical significance of CSN5 amplification/overexpression was evaluated in 16 prostate cancer clinical cohorts. Its oncogenic activity was assessed by genetic and pharmacologic perturbations of CSN5 activity in prostate cancer cell lines. The molecular mechanisms of CSN5 function were assessed, as was the efficacy of the CSN5 inhibitor CSN5i-3 in vitro and in vivo. Finally, the transcription cofactor activity of CSN5 in prostate cancer cells was determined. The prognostic significance of CSN5 amplification and overexpression in prostate cancer was independent of MYC amplification. Inhibition of CSN5 inhibited its oncogenic function by targeting AR signaling, DNA repair, multiple oncogenic pathways, and spliceosome regulation. Furthermore, inhibition of CSN5 repressed metabolic pathways, including oxidative phosphorylation and glycolysis in AR-negative prostate cancer cells. Targeting CSN5 with CSN5i-3 showed potent antitumor activity in vitro and in vivo. Importantly, CSN5i-3 synergizes with PARP inhibitors to inhibit prostate cancer cell growth. CSN5 functions as a transcription cofactor to cooperate with multiple transcription factors in prostate cancer. Inhibiting CSN5 strongly attenuates prostate cancer progression and could enhance PARP inhibition efficacy in the treatment of prostate cancer.


Assuntos
Complexo do Signalossomo COP9
19.
Clin Cancer Res ; 27(6): 1792-1806, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33334906

RESUMO

PURPOSE: Alterations in DNA damage repair (DDR) pathway genes occur in 20%-25% of men with metastatic castration-resistant prostate cancer (mCRPC). Although PARP inhibitors (PARPis) have been shown to benefit men with mCRPC harboring DDR defects due to mutations in BRCA1/2 and ATM, additional treatments are necessary because the effects are not durable. EXPERIMENTAL DESIGN: We performed transcriptomic analysis of publicly available mCRPC cases, comparing BRCA2 null with BRCA2 wild-type. We generated BRCA2-null prostate cancer cells using CRISPR/Cas9 and treated these cells with PARPis and SRC inhibitors. We also assessed the antiproliferative effects of combination treatment in 3D prostate cancer organoids. RESULTS: We observed significant enrichment of the SRC signaling pathway in BRCA2-altered mCRPC. BRCA2-null prostate cancer cell lines had increased SRC phosphorylation and higher sensitivity to SRC inhibitors (e.g., dasatinib, bosutinib, and saracatinib) relative to wild-type cells. Combination treatment with PARPis and SRC inhibitors was antiproliferative and had a synergistic effect in BRCA2-null prostate cancer cells, mCRPC organoids, and Trp53/Rb1-null prostate cancer cells. Inhibition of SRC signaling by dasatinib augmented DNA damage in BRCA2-null prostate cancer cells. Moreover, SRC knockdown increased PARPi sensitivity in BRCA2-null prostate cancer cells. CONCLUSIONS: This work suggests that SRC activation may be a potential mechanism of PARPi resistance and that treatment with SRC inhibitors may overcome this resistance. Our preclinical study demonstrates that combining PARPis and SRC inhibitors may be a promising therapeutic strategy for patients with BRCA2-null mCRPC.


Assuntos
Antineoplásicos/farmacologia , Proteína BRCA2/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Mutações Sintéticas Letais , Quinases da Família src/antagonistas & inibidores , Animais , Apoptose , Proliferação de Células , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , Masculino , Camundongos , Camundongos Nus , Prognóstico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA