Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 10(11): 5032-5044, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649459

RESUMO

High entropy alloys (HEAs), a novel class of material, have been explored in terms of their excellent mechanical properties. Seawater electrolysis is a step towards sustainable production of carbon-neutral fuels such as H2, O2, and industrially demanding Cl2. Herein, we report a practically viable FeCoNiMnCr HEA nanoparticles system grafted on a conductive carbon matrix for promising seawater electrolysis. The comprehensive kinetics analysis of the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and chlorine evolution reaction (CER) confirms the effectiveness of our system. As an electrocatalyst, HEAs grafted on carbon black show trifunctionality with promising kinetics, selectivity and enduring performance, towards seawater splitting. We optimize high entropy alloy decorated/grafted carbon black (HEACB) catalysts, studying their synthesis temperature to scrutinize the effect of alloy formation variation on the catalysis efficacy. During the catalysis, selectivity between two mutually competing reactions, CER and OER, in the electrochemical catalysis of seawater is controlled by the reaction media pH. We employ Mott-Schottky measurements to probe the band structure of the intrinsically induced metal-semiconductor junction in the HEACB catalyst, where the carrier density and flat band potential are optimized. The HEACB sample provides promising results towards overall seawater electrolysis with a net half-cell potential of about 1.65 V with good stability, which strongly implies its broad practical applicability.

3.
ACS Appl Mater Interfaces ; 14(14): 16108-16116, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35357120

RESUMO

We report a user-friendly methodology for the successful designing of targeted single-phased face-centered cubic (fcc) FeCoNiMnCr high-entropy alloy (HEA) nanoparticle-grafted N-doped carbon nanotubes (CNTs). The nanostructure assimilates the advantages of N-doped carbon and HEA nanoparticles as a core for the efficient promotion of electrochemical oxygen reduction reaction (ORR). It emulates the commercial Pt-C electrocatalyst for ORR and shows promise for better performance in the Ohmic polarization region of fuel cells. In addition, it ensures superior efficacy over those of numerous recently reported transition metal-based traditional alloy composites for ORR. The presented methodology has the potential to pave the way for the effective designing of a variety of targeted HEA systems with ease, which is necessary to widen the domain of HEA for numerous applications.

4.
ACS Appl Mater Interfaces ; 13(3): 3771-3781, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33438991

RESUMO

The properties and, hence, the application of materials are dependent on the way their constituent atoms are arranged. Here, we report a facile approach to produce body-centered cubic (bcc) and face-centered cubic (fcc) phases of bimetallic FeCo crystalline nanoparticles embedded into nitrogen-doped carbon nanotubes (NCNTs) with equal loading and almost similar particle size for both crystalline phases by a rational selection of precursors. The two electrocatalysts with similar composition but different crystalline structures of the encapsulated nanoparticles have allowed us, for the first time, to account for the effect of crystal structure on the overall work function of electrocatalysts and the concomitant correlation with the oxygen reduction reaction (ORR). This study unveils that the electrocatalysts with lower work function show lower activation energy to facilitate the ORR. Importantly, the difference between the ORR activation energy on electrocatalysts and their respective work functions are found to be identical (∼0.2 eV). A notable decrease in the ORR activity after acid treatment indicates the significant role of encapsulated FeCo nanoparticles in influencing the oxygen electrochemistry by modulating the material property of overall electrocatalysts.

5.
Chem Commun (Camb) ; 57(5): 611-614, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33346256

RESUMO

High-entropy alloys (HEAs) with five or more elements can provide near-continuous adsorption energies and can be optimized for superior persistent catalytic activity. This report presents electrochemical water oxidation facilitated by employing graphene and FeCoNiCuCr HEA nanoparticle based composites prepared via the mechanical milling of graphite-metal powders. The composite efficiently facilitates water oxidation with a low overpotential of 330 mV at 10 mA cm-2, and high specific and mass activities (∼143 mA cm-2 and 380 mA mg-1, respectively, at 1.75 V). Importantly, the composites exhibit excellent accelerated cycling stability with ∼99% current retention (after 3250 cycles). The HEA-based composites are anticipated to replace noble/precious metal based traditional electrocatalysts in the future, the use of which is a major obstacle in the technological scalability of electrochemical energy conversion and storage devices.

6.
ACS Appl Mater Interfaces ; 12(48): 53749-53759, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33207878

RESUMO

Despite the availability and dedicated studies on a variety of carbon nanostructures, amorphous carbon is still a preferred support for a wide range of commercially available metal catalysts. In order to shed some light on this, we carried out electroless deposition of metal nanoparticles on various carbon nanostructures such as amorphous carbon (a-C), carbon nanotubes (CNTs), and nitrogen-doped CNTs (NCNTs) under similar experimental conditions. The main objective is to elucidate the preferable deposition on a particular carbon nanostructure, if any, and understand the underlying mechanism. Experimental results unveil preferred electroless deposition of metal nanoparticles on a-C over CNTs and NCNTs. Notably, the deposition is nicely correlated with the position of the Fermi level (EF) with respect to the Mn+ ↔ M0 redox level (E0). Remarkably, EF is found to be in the following order NCNT > CNT > a-C and the smaller gap (E0-EF) favors the faster electron transfer, resulting in the preferential reduction of Mn+, yielding finer nanoparticles on a-C. We believe that this approach can pave the way for designing noble metal-based carbon nanocomposites for a variety of applications, ranging from environmental redemption to electrochemical energy harvesting. As case studies, we have explored the nanocomposites for various catalytic activities and found them to be very competent with recently reported various state-of-the-art electrocatalysts and their commercial counterparts.

7.
ACS Appl Mater Interfaces ; 12(32): 36026-36039, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32677817

RESUMO

The study reports the optimized incorporation of pyridinic nitrogen in nitrogen-doped carbon nanotubes (CNTs) to realize effective Fe-Nx centers throughout the framework. The study unveils nitrogen as a valuable asset to promote the homogeneous dispersion of Fe moieties throughout the CNT framework, which is a necessary component to institute uniform Fe-Nx centers. In addition, pyridinic nitrogen causes disruption in strongly delocalized π-electrons, which impart electron-withdrawing nature in the carbon matrix, resulting in an anodic shift in oxygen reduction reaction (ORR) onset potential (Eonset). The direct interaction of Fe-Nx with O2, as evidenced by poisoning and computational studies, ensures the preferential inner sphere electron transfer mechanism. Despite the alkaline medium, the outer sphere electron transfer mechanism was muted, with suppressed HO2- generation, preferential 4e- reduction pathways, and excellent cyclic stability. The study indicates the dependency of ORR half-wave potential on the electron transfer mechanism. The poisoning study unveils the direct involvement of Fe-Nx electroactive centers in facilitating ORR in alkaline medium. It further indicates a noticable increase (up to ∼25%) in peroxide generation-an unwanted ORR intermediate-and concomitant reduction in average electron transfer no. per oxygen molecule.

8.
ACS Appl Mater Interfaces ; 12(12): 13888-13895, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32119513

RESUMO

Oxides are envisioned as promising catalysts to facilitate water oxidation, and the benign presence of hydroxide moieties can further enhance the catalyst performance. However, the nature of synergy between oxides and hydroxides remains elusive. In this study, we have designed a one-pot solution growth technique for the synthesis of flower-shaped N-doped-C-enveloped NiCo2O4/NixCo(1-x)(OH)y catalysts with varying oxide and hydroxide contents and investigated their water oxidation behavior. The correlation between performance-determining parameters involved in water oxidation, such as the onset potential and overpotential with oxide and/or hydroxide content, oxidation states (oxides), and elemental composition (Co/Ni content), and the possible ways to achieve their optimal values are discussed in detail. Our observations conclude that the onset potential and overpotential are minimal for the hybrid oxide-hydroxide bimetallic system compared with pristine hydroxide or oxide. The optimal hybrid catalyst shows excellent current density, low Tafel slope (82 mV/dec), and low onset potential (281 mV at 2 mA/cm2) and overpotential (348 mV at 10 mA/cm2), besides enduring operational stability in alkaline medium. The low Tafel slope suggests the preferable kinetics for water oxidation, and the poisoning study reveals the direct involvement of metal as active sites. The overall study unveils the synergy in the Co-Ni-based binary transition-metal oxide-hydroxide hybrid, which makes it a potential candidate for water oxidation catalysts, and hence, it is expected that the hybrid will find applications in energy conversion devices, such as electrolyzers.

9.
ACS Omega ; 5(51): 32852-32860, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33403245

RESUMO

Nonmetallic and metallic heteroatom doped carbonaceous materials have garnered tremendous research attention due to a potential replacement to the precious Pt-group and (Ru, Ir)-oxide based catalysts and are essential part of the next-generation electrode catalysts for fuel cells, electrolyzers, and metal-air batteries. In this regard, we focus on three important categories of carbonaceous material, namely, metal-free heteroatom doped, transition metal heteroatom codoped, and carbon nitride (C3N4) based hybrid materials. Implications of various strategies, using one-step pyrolysis technique have been discussed for the effective design of heteroatom modified carbonaceous electrocatalysts. In this minireview, we outline the richness of one-step strategy for designing electrochemically active heteroatom doped carbon, transition metal-heteroatom codoped carbon, and C3N4 derived hybrid materials in the perspective of electrochemical energy conversion and storage devices. We also outline the future research direction in the development of highly efficient and sustainable electrocatalysts for oxygen electrochemistry. Finally, we wind up the article with the challenges and outlook on heteroatoms and transition metal-heteroatom codoped carbon material as an efficient and low-cost electrocatalysts, thereby promoting the development of this important area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA