Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Electron Mater ; 6(7): 5021-5028, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39070084

RESUMO

Heteroepitaxy of gallium oxide (Ga2O3) is gaining popularity to address the absence of p-type doping, limited thermal conductivity of Ga2O3 epilayers, and toward realizing high-quality p-n heterojunction. During the growth of ß-Ga2O3 on 4H-SiC (0001) substrates using metal-organic chemical vapor deposition, we observed formation of incomplete, misoriented particles when the layer was grown at a temperature between 650 °C and 750 °C. We propose a thermodynamic model for Ga2O3 heteroepitaxy on foreign substrates which shows that the energy cost of growing ß-Ga2O3 on 4H-SiC is slightly lower as compared to sapphire substrates, suggesting similar high-temperature growth as sapphire, typically in the range of 850 °C-950 °C, that can be used for the growth of ß-Ga2O3 on SiC. A two-step modified growth method was developed where the nucleation layer was grown at 750 °C followed by a buffer layer grown at various temperatures from 920 °C to 950 °C. 2θ-ω scan of X-ray diffraction (XRD) and transmission electron microscope images confirm the ß-polymorph of Ga2O3 with dominant peaks in the (-201) direction. The buffer layer grown at 950 °C using a "ramp-growth" technique exhibits root-mean-square surface roughness of 3 nm and full width of half maxima of XRD rocking curve as low as 0.79°, comparable to the most mature ß-Ga2O3 heteroepitaxy on sapphire, as predicted by the thermodynamic model. Finally, the interface energy of an average Ga2O3 island grown on 4H-SiC is calculated to be 0.2 J/m2 from the cross-section scanning transmission electron microscope image, following the Wulff-Kaishew theorem of the equilibrium island shape.

2.
Cryst Growth Des ; 23(11): 8290-8295, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37937192

RESUMO

Heteroepitaxial growth of ß-Ga2O3 on (001) diamond by metal-organic chemical vapor deposition (MOCVD) is reported. A detailed study was performed with Transmission Electron Microscopy (TEM) elucidating the epitaxial relation of (-201) ß-Ga2O3||(001) diamond and [010]/[-13-2] ß-Ga2O3 ||[110]/[1-10] diamond, with the presence of different crystallographically related epitaxial variants apparent from selected area diffraction patterns. A model explaining the arrangement of atoms along ⟨110⟩ diamond is demonstrated with a lattice mismatch of 1.03-3.66% in the perpendicular direction. Dark field imaging showed evidence of arrays of discrete defects at the boundaries between different grains. Strategies to reduce the density of defects are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA