Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 58(1): 61-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24126580

RESUMO

Moxifloxacin has shown excellent activity against drug-sensitive as well as drug-resistant tuberculosis (TB), thus confirming DNA gyrase as a clinically validated target for discovering novel anti-TB agents. We have identified novel inhibitors in the pyrrolamide class which kill Mycobacterium tuberculosis through inhibition of ATPase activity catalyzed by the GyrB domain of DNA gyrase. A homology model of the M. tuberculosis H37Rv GyrB domain was used for deciphering the structure-activity relationship and binding interactions of inhibitors with mycobacterial GyrB enzyme. Proposed binding interactions were later confirmed through cocrystal structure studies with the Mycobacterium smegmatis GyrB ATPase domain. The most potent compound in this series inhibited supercoiling activity of DNA gyrase with a 50% inhibitory concentration (IC50) of <5 nM, an MIC of 0.03 µg/ml against M. tuberculosis H37Rv, and an MIC90 of <0.25 µg/ml against 99 drug-resistant clinical isolates of M. tuberculosis. The frequency of isolating spontaneous resistant mutants was ∼10(-6) to 10(-8), and the point mutation mapped to the M. tuberculosis GyrB domain (Ser208 Ala), thus confirming its mode of action. The best compound tested for in vivo efficacy in the mouse model showed a 1.1-log reduction in lung CFU in the acute model and a 0.7-log reduction in the chronic model. This class of GyrB inhibitors could be developed as novel anti-TB agents.


Assuntos
Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/patogenicidade , Tuberculose/tratamento farmacológico , Animais , Linhagem Celular , Humanos , Camundongos , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade
2.
Science ; 324(5928): 801-4, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19299584

RESUMO

New drugs are required to counter the tuberculosis (TB) pandemic. Here, we describe the synthesis and characterization of 1,3-benzothiazin-4-ones (BTZs), a new class of antimycobacterial agents that kill Mycobacterium tuberculosis in vitro, ex vivo, and in mouse models of TB. Using genetics and biochemistry, we identified the enzyme decaprenylphosphoryl-beta-d-ribose 2'-epimerase as a major BTZ target. Inhibition of this enzymatic activity abolishes the formation of decaprenylphosphoryl arabinose, a key precursor that is required for the synthesis of the cell-wall arabinans, thus provoking cell lysis and bacterial death. The most advanced compound, BTZ043, is a candidate for inclusion in combination therapies for both drug-sensitive and extensively drug-resistant TB.


Assuntos
Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Mycobacterium tuberculosis/efeitos dos fármacos , Polissacarídeos/biossíntese , Racemases e Epimerases/antagonistas & inibidores , Compostos de Espiro/farmacologia , Compostos de Espiro/uso terapêutico , Tiazinas/farmacologia , Tiazinas/uso terapêutico , Tuberculose/tratamento farmacológico , Sequência de Aminoácidos , Animais , Antituberculosos/síntese química , Antituberculosos/química , Arabinose/metabolismo , Parede Celular/metabolismo , Farmacorresistência Bacteriana , Inibidores Enzimáticos/líquido cefalorraquidiano , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Etambutol/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes Bacterianos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Estrutura Molecular , Mycobacterium/efeitos dos fármacos , Mycobacterium/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Racemases e Epimerases/metabolismo , Compostos de Espiro/síntese química , Compostos de Espiro/química , Tiazinas/síntese química , Tiazinas/química , Tuberculose/microbiologia
3.
Antimicrob Agents Chemother ; 51(2): 576-82, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17145798

RESUMO

Members of the fluoroquinolone class are being actively evaluated for inclusion in tuberculosis chemotherapy regimens, and we sought to determine the best in vitro and pharmacodynamic predictors of in vivo efficacy in mice. MICs for Mycobacterium tuberculosis H37Rv were 0.1 mg/liter (sparfloxacin [SPX]) and 0.5 mg/liter (moxifloxacin [MXF], ciprofloxacin [CIP], and ofloxacin [OFX]). The unbound fraction in the presence of murine serum was concentration dependent for MXF, OFX, SPX, and CIP. In vitro time-kill studies revealed a time-dependent effect, with the CFU reduction on day 7 similar for all four drugs. However, with a J774A.1 murine macrophage tuberculosis infection model, CIP was ineffective at up to 32x MIC. In addition, MXF, OFX, and SPX exhibited less activity than had been seen in the in vitro time-kill study. After demonstrating that the area under the concentration-time curve (AUC) and maximum concentration of drug in plasma were proportional to the dose in vivo, dose fractionation studies with total oral doses of 37.5 to 19,200 mg/kg of body weight (MXF), 225 to 115,200 mg/kg (OFX), 30 to 50,000 mg/kg (SPX), and 38 to 100,000 mg/kg (CIP) were performed with a murine aerosol infection model. MXF was the most efficacious agent (3.0+/-0.2 log10 CFU/lung reduction), followed by SPX (1.4+/-0.1) and OFX (1.5+/-0.1). CIP showed no effect. The ratio of the AUC to the MIC was the pharmacodynamic parameter that best described the in vivo efficacy. In summary, a lack of intracellular killing predicted the lack of in vivo activity of CIP. The in vivo rank order for maximal efficacy of the three active fluoroquinolones was not clearly predicted by the in vitro assays, however.


Assuntos
Antibacterianos/farmacocinética , Compostos Aza/farmacocinética , Ciprofloxacina/farmacocinética , Fluoroquinolonas/farmacocinética , Mycobacterium tuberculosis/efeitos dos fármacos , Ofloxacino/farmacocinética , Quinolinas/farmacocinética , Animais , Antituberculosos/farmacocinética , Compostos Aza/administração & dosagem , Ciprofloxacina/administração & dosagem , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Fluoroquinolonas/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Moxifloxacina , Ofloxacino/administração & dosagem , Valor Preditivo dos Testes , Quinolinas/administração & dosagem , Fatores de Tempo , Tuberculose/tratamento farmacológico
4.
Drug Metabol Drug Interact ; 21(3-4): 163-85, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16841512

RESUMO

Drug interactions are often a result of induction or inhibition of cytochrome P450 (CYP) enzymes by co-administered drugs. A high throughput fluorescence assay using cDNA-expressed human CYP isozymes and fluorogenic substrates has been reported for the study of CYP inhibition. We used this assay to evaluate CYP inhibition profiles of 21 marketed anti-infective drugs. We found that six of the eight potent inhibitors identified in this screen (IC50 <10 microM against at least one CYP isozyme) correlated with significant drug-drug interactions in the clinic. In contrast, the intermediate and weak inhibitors (IC50 >10 microM) did not indicate clinically significant drug interactions. Furthermore, we observed that results obtained in the fluorescence assay correlated with conventional, well-established, low throughput methods that utilize human liver microsomes. These data suggest that in the early stages of drug discovery, the fluorescence assay for CYP inhibition could be used in conjunction with a human liver microsomal assay to identify new chemical entities with a potential for drug-drug interactions.


Assuntos
Anti-Infecciosos/farmacologia , Inibidores das Enzimas do Citocromo P-450 , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Citocromo P-450 CYP2C9 , Diclofenaco/metabolismo , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes , Humanos , Hidroxilação , Isoenzimas/antagonistas & inibidores , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia
5.
Antimicrob Agents Chemother ; 48(8): 2951-7, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15273105

RESUMO

Limited data exist on the pharmacokinetic-pharmacodynamic (PK-PD) parameters of the bactericidal activities of the available antimycobacterial drugs. We report on the PK-PD relationships for isoniazid. Isoniazid exhibited concentration (C)-dependent killing of Mycobacterium tuberculosis H37Rv in vitro, with a maximum reduction of 4 log10 CFU/ml. In these studies, 50% of the maximum effect was achieved at a C/MIC ratio of 0.5, and the maximum effect did not increase with exposure times of up to 21 days. Conversely, isoniazid produced less than a 0.5-log10 CFU/ml reduction in two different intracellular infection models (J774A.1 murine macrophages and whole human blood). In a murine model of aerosol infection, isoniazid therapy for 6 days produced a reduction of 1.4 log10 CFU/lung. Dose fractionation studies demonstrated that the 24-h area under the concentration-time curve/MIC (r2 = 0.83) correlated best with the bactericidal efficacy, followed by the maximum concentration of drug in serum/MIC (r2 = 0.73).


Assuntos
Antituberculosos/farmacologia , Antituberculosos/farmacocinética , Isoniazida/farmacologia , Isoniazida/farmacocinética , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Aerossóis , Animais , Antituberculosos/administração & dosagem , Área Sob a Curva , Proteínas Sanguíneas/metabolismo , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Feminino , Humanos , Técnicas In Vitro , Isoniazida/administração & dosagem , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Ligação Proteica
6.
Antimicrob Agents Chemother ; 47(7): 2118-24, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12821456

RESUMO

Limited information exists on the pharmacokinetic (PK)-pharmacodynamic (PD) relationships of drugs against Mycobacterium tuberculosis. Our aim was to identify the PK-PD parameter that best describes the efficacy of rifampin on the basis of in vitro and PK properties. Consistent with 83.8% protein binding by equilibrium dialysis, the rifampin MIC for M. tuberculosis strain H37Rv rose from 0.1 in a serum-free system to 1.0 mg/ml when it was tested in the presence of 50% serum. In time-kill studies, rifampin exhibited area under the concentration-time curve (AUC)-dependent killing in vitro, with maximal killing seen on all days and with the potency increasing steadily over a 9-day exposure period. MIC and time-kill studies performed with intracellular organisms in a macrophage monolayer model yielded similar results. By use of a murine aerosol infection model with dose ranging and dose fractionation over 6 days, the PD parameter that best correlated with a reduction in bacterial counts was found to be AUC/MIC (r(2) = 0.95), whereas the maximum concentration in serum/MIC (r(2) = 0.86) and the time that the concentration remained above the MIC (r(2) = 0.44) showed lesser degrees of correlation.


Assuntos
Antibióticos Antituberculose/farmacocinética , Mycobacterium tuberculosis/efeitos dos fármacos , Rifampina/farmacocinética , Tuberculose Pulmonar/tratamento farmacológico , Aerossóis , Animais , Linhagem Celular , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Técnicas In Vitro , Macrófagos/citologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA