Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Psychol Res Behav Manag ; 17: 2331-2345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882233

RESUMO

Over the past two decades, functional magnetic resonance imaging (fMRI) has become the primary tool for exploring neural correlates of emotion. To enhance the reliability of results in understanding the complex nature of emotional experiences, researchers combine findings from multiple fMRI studies using coordinate-based meta-analysis (CBMA). As one of the most widely employed CBMA methods worldwide, activation likelihood estimation (ALE) is of great importance in affective neuroscience and neuropsychology. This comprehensive review provides an introductory guide for implementing the ALE method in emotion research, outlining the experimental steps involved. By presenting a case study about the emotion of disgust, with regard to both its core and social processing, we offer insightful commentary as to how ALE can enable researchers to produce consistent results and, consequently, fruitfully investigate the neural mechanisms underpinning emotions, facilitating further progress in this field.

2.
Eur Arch Psychiatry Clin Neurosci ; 274(1): 3-18, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36599959

RESUMO

Despite decades of massive neuroimaging research, the comprehensive characterization of short-range functional connectivity in autism spectrum disorder (ASD) remains a major challenge for scientific advances and clinical translation. From the theoretical point of view, it has been suggested a generalized local over-connectivity that would characterize ASD. This stance is known as the general local over-connectivity theory. However, there is little empirical evidence supporting such hypothesis, especially with regard to pediatric individuals with ASD (age [Formula: see text] 18 years old). To explore this issue, we performed a coordinate-based meta-analysis of regional homogeneity studies to identify significant changes of local connectivity. Our analyses revealed local functional under-connectivity patterns in the bilateral posterior cingulate cortex and superior frontal gyrus (key components of the default mode network) and in the bilateral paracentral lobule (a part of the sensorimotor network). We also performed a functional association analysis of the identified areas, whose dysfunction is clinically consistent with the well-known deficits affecting individuals with ASD. Importantly, we did not find relevant clusters of local hyper-connectivity, which is contrary to the hypothesis that ASD may be characterized by generalized local over-connectivity. If confirmed, our result will provide a valuable insight into the understanding of the complex ASD pathophysiology.


Assuntos
Transtorno do Espectro Autista , Humanos , Criança , Adolescente , Transtorno do Espectro Autista/diagnóstico por imagem , Mapeamento Encefálico/métodos , Vias Neurais/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem
3.
Artigo em Inglês | MEDLINE | ID: mdl-35131520

RESUMO

BACKGROUND: Although neuroimaging research has identified atypical neuroanatomical substrates in individuals with autism spectrum disorder (ASD), it is at present unclear whether and to what extent disorder-selective gray matter alterations occur in this spectrum of conditions. In fact, a growing body of evidence shows a substantial overlap between the pathomorphological changes across different brain diseases, which may complicate identification of reliable neural markers and differentiation of the anatomical substrates of distinct psychopathologies. METHODS: Using a novel data-driven and Bayesian methodology with published voxel-based morphometry data (849 peer-reviewed experiments and 22,304 clinical subjects), this study performs the first reverse inference investigation to explore the selective structural brain alteration profile of ASD. RESULTS: We found that specific brain areas exhibit a >90% probability of gray matter alteration selectivity for ASD: the bilateral precuneus (Brodmann area 7), right inferior occipital gyrus (Brodmann area 18), left cerebellar lobule IX and Crus II, right cerebellar lobule VIIIA, and right Crus I. Of note, many brain voxels that are selective for ASD include areas that are posterior components of the default mode network. CONCLUSIONS: The identification of these spatial gray matter alteration patterns offers new insights into understanding the complex neurobiological underpinnings of ASD and opens attractive prospects for future neuroimaging-based interventions.


Assuntos
Transtorno do Espectro Autista , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Teorema de Bayes , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , Substância Cinzenta/patologia
5.
Brain Struct Funct ; 226(7): 2181-2204, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34170391

RESUMO

Asymmetries in gray matter alterations raise important issues regarding the pathological co-alteration between hemispheres. Since homotopic areas are the most functionally connected sites between hemispheres and gray matter co-alterations depend on connectivity patterns, it is likely that this relationship might be mirrored in homologous interhemispheric co-altered areas. To explore this issue, we analyzed data of patients with Alzheimer's disease, schizophrenia, bipolar disorder and depressive disorder from the BrainMap voxel-based morphometry database. We calculated a map showing the pathological homotopic anatomical co-alteration between homologous brain areas. This map was compared with the meta-analytic homotopic connectivity map obtained from the BrainMap functional database, so as to have a meta-analytic connectivity modeling map between homologous areas. We applied an empirical Bayesian technique so as to determine a directional pathological co-alteration on the basis of the possible tendencies in the conditional probability of being co-altered of homologous brain areas. Our analysis provides evidence that: the hemispheric homologous areas appear to be anatomically co-altered; this pathological co-alteration is similar to the pattern of connectivity exhibited by the couples of homologues; the probability to find alterations in the areas of the left hemisphere seems to be greater when their right homologues are also altered than vice versa, an intriguing asymmetry that deserves to be further investigated and explained.


Assuntos
Encéfalo , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Substância Cinzenta , Humanos , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem
6.
Hum Brain Mapp ; 42(11): 3343-3351, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33991154

RESUMO

Over the past decades, powerful MRI-based methods have been developed, which yield both voxel-based maps of the brain activity and anatomical variation related to different conditions. With regard to functional or structural MRI data, forward inferences try to determine which areas are involved given a mental function or a brain disorder. A major drawback of forward inference is its lack of specificity, as it suggests the involvement of brain areas that are not specific for the process/condition under investigation. Therefore, a different approach is needed to determine to what extent a given pattern of cerebral activation or alteration is specifically associated with a mental function or brain pathology. In this study, we present a new tool called BACON (Bayes fACtor mOdeliNg) for performing reverse inference both with functional and structural neuroimaging data. BACON implements the Bayes' factor and uses the activation likelihood estimation derived-maps to obtain posterior probability distributions on the evidence of specificity with regard to a particular mental function or brain pathology.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo , Imageamento por Ressonância Magnética/métodos , Modelos Estatísticos , Teorema de Bayes , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/fisiopatologia , Software
7.
Neuroimage Clin ; 30: 102583, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33618237

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by atypical brain anatomy and connectivity. Graph-theoretical methods have mainly been applied to detect altered patterns of white matter tracts and functional brain activation in individuals with ASD. The network topology of gray matter (GM) abnormalities in ASD remains relatively unexplored. METHODS: An innovative meta-connectomic analysis on voxel-based morphometry data (45 experiments, 1,786 subjects with ASD) was performed in order to investigate whether GM variations can develop in a distinct pattern of co-alteration across the brain. This pattern was then compared with normative profiles of structural and genetic co-expression maps. Graph measures of centrality and clustering were also applied to identify brain areas with the highest topological hierarchy and core sub-graph components within the co-alteration network observed in ASD. RESULTS: Individuals with ASD exhibit a distinctive and topologically defined pattern of GM co-alteration that moderately follows the structural connectivity constraints. This was not observed with respect to the pattern of genetic co-expression. Hub regions of the co-alteration network were mainly left-lateralized, encompassing the precuneus, ventral anterior cingulate, and middle occipital gyrus. Regions of the default mode network appear to be central in the topology of co-alterations. CONCLUSION: These findings shed new light on the pathobiology of ASD, suggesting a network-level dysfunction among spatially distributed GM regions. At the same time, this study supports pathoconnectomics as an insightful approach to better understand neuropsychiatric disorders.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Conectoma , Substância Branca , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno Autístico/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
8.
Neurosci Biobehav Rev ; 123: 83-103, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497790

RESUMO

Characterizing neuroanatomical markers of different stages of schizophrenia (SZ) to assess pathophysiological models of how the disorder develops is an important target for the clinical practice. We performed a meta-analysis of voxel-based morphometry studies of genetic and clinical high-risk subjects (g-/c-HR), recently diagnosed (RDSZ) and chronic SZ patients (ChSZ). We quantified gray matter (GM) changes associated with these four conditions and compared them with contrast and conjunctional data. We performed the behavioral analysis and networks decomposition of alterations to obtain their functional characterization. Results reveal a cortical-subcortical, left-to-right homotopic progression of GM loss. The right anterior cingulate is the only altered region found altered among c-HR, RDSZ and ChSZ. Contrast analyses show left-lateralized insular, amygdalar and parahippocampal GM reduction in RDSZ, which appears bilateral in ChSZ. Functional decomposition shows involvement of the salience network, with an enlargement of the sensorimotor network in RDSZ and the thalamus-basal nuclei network in ChSZ. These findings support the current neuroprogressive models of SZ and integrate this deterioration with the clinical evolution of the disease.


Assuntos
Esquizofrenia , Encéfalo/diagnóstico por imagem , Substância Cinzenta , Giro do Cíngulo , Humanos , Imageamento por Ressonância Magnética , Esquizofrenia/diagnóstico por imagem
9.
Neuroimage ; 225: 117481, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33122115

RESUMO

Brain disorders tend to impact on many different regions in a typical way: alterations do not spread randomly; rather, they seem to follow specific patterns of propagation that show a strong overlap between different pathologies. The insular cortex is one of the brain areas more involved in this phenomenon, as it seems to be altered by a wide range of brain diseases. On these grounds we thoroughly investigated the impact of brain disorders on the insular cortices analyzing the patterns of their structural co-alteration. We therefore investigated, applying a network analysis approach to meta-analytic data, 1) what pattern of gray matter alteration is associated with each of the insular cortex parcels; 2) whether or not this pattern correlates and overlaps with its functional meta-analytic connectivity; and, 3) the behavioral profile related to each insular co-alteration pattern. All the analyses were repeated considering two solutions: one with two clusters and another with three. Our study confirmed that the insular cortex is one of the most altered cerebral regions among the cortical areas, and exhibits a dense network of co-alteration including a prevalence of cortical rather than sub-cortical brain regions. Regions of the frontal lobe are the most involved, while occipital lobe is the less affected. Furthermore, the co-alteration and co-activation patterns greatly overlap each other. These findings provide significant evidence that alterations caused by brain disorders are likely to be distributed according to the logic of network architecture, in which brain hubs lie at the center of networks composed of co-altered areas. For the first time, we shed light on existing differences between insula sub-regions even in the pathoconnectivity domain.


Assuntos
Encefalopatias/fisiopatologia , Córtex Cerebral/fisiopatologia , Rede Nervosa/fisiopatologia , Encéfalo/fisiopatologia , Mapeamento Encefálico , Conectoma , Substância Cinzenta/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia , Lobo Occipital/fisiopatologia
10.
Hum Brain Mapp ; 41(15): 4155-4172, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32829507

RESUMO

In the field of neuroimaging reverse inferences can lead us to suppose the involvement of cognitive processes from certain patterns of brain activity. However, the same reasoning holds if we substitute "brain activity" with "brain alteration" and "cognitive process" with "brain disorder." The fact that different brain disorders exhibit a high degree of overlap in their patterns of structural alterations makes forward inference-based analyses less suitable for identifying brain areas whose alteration is specific to a certain pathology. In the forward inference-based analyses, in fact, it is impossible to distinguish between areas that are altered by the majority of brain disorders and areas that are specifically affected by certain diseases. To address this issue and allow the identification of highly pathology-specific altered areas we used the Bayes' factor technique, which was employed, as a proof of concept, on voxel-based morphometry data of schizophrenia and Alzheimer's disease. This technique allows to calculate the ratio between the likelihoods of two alternative hypotheses (in our case, that the alteration of the voxel is specific for the brain disorder under scrutiny or that the alteration is not specific). We then performed temporal simulations of the alterations' spread associated with different pathologies. The Bayes' factor values calculated on these simulated data were able to reveal that the areas, which are more specific to a certain disease, are also the ones to be early altered. This study puts forward a new analytical instrument capable of innovating the methodological approach to the investigation of brain pathology.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Neuroimagem/métodos , Esquizofrenia/diagnóstico por imagem , Doença de Alzheimer/patologia , Teorema de Bayes , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/patologia , Diagnóstico Diferencial , Substância Cinzenta/patologia , Humanos , Modelos Teóricos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia , Neuroimagem/normas , Estudo de Prova de Conceito , Esquizofrenia/patologia
11.
Hum Brain Mapp ; 41(14): 3878-3899, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32562581

RESUMO

It is becoming clearer that the impact of brain diseases is more convincingly represented in terms of co-alterations rather than in terms of localization of alterations. In this context, areas characterized by a long mean distance of co-alteration may be considered as hubs with a crucial role in the pathology. We calculated meta-analytic transdiagnostic networks of co-alteration for the gray matter decreases and increases, and we evaluated the mean Euclidean, fiber-length, and topological distance of its nodes. We also examined the proportion of co-alterations between canonical networks, and the transdiagnostic variance of the Euclidean distance. Furthermore, disease-specific analyses were conducted on schizophrenia and Alzheimer's disease. The anterodorsal prefrontal cortices appeared to be a transdiagnostic hub of long-distance co-alterations. Also, the disease-specific analyses showed that long-distance co-alterations are more able than classic meta-analyses to identify areas involved in pathology and symptomatology. Moreover, the distance maps were correlated with the normative connectivity. Our findings substantiate the network degeneration hypothesis in brain pathology. At the same time, they suggest that the concept of co-alteration might be a useful tool for clinical neuroscience.


Assuntos
Doença de Alzheimer , Córtex Cerebral , Substância Cinzenta , Imageamento por Ressonância Magnética , Rede Nervosa , Neuroimagem , Esquizofrenia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Bases de Dados Factuais , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Substância Cinzenta/fisiopatologia , Humanos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Neuroimagem/estatística & dados numéricos , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia
12.
Front Neurosci ; 13: 1169, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749675

RESUMO

During the last three decades our understanding of the brain processes underlying consciousness and attention has significantly improved, mainly because of the advances in functional neuroimaging techniques. Still, caution is needed for the correct interpretation of these empirical findings, as both research and theoretical proposals are hampered by a number of conceptual difficulties. We review some of the most significant theoretical issues concerning the concepts of consciousness and attention in the neuroscientific literature, and put forward the implications of these reflections for a coherent model of the neural correlates of these brain functions. Even though consciousness and attention have an overlapping pattern of neural activity, they should be considered as essentially separate brain processes. The contents of phenomenal consciousness are supposed to be associated with the activity of multiple synchronized networks in the temporo-parietal-occipital areas. Only subsequently, attention, supported by fronto-parietal networks, enters the process of consciousness to provide focal awareness of specific features of reality.

13.
J Cogn Neurosci ; 31(12): 1796-1826, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31418337

RESUMO

During the last two decades, our inner sense of time has been repeatedly studied with the help of neuroimaging techniques. These investigations have suggested the specific involvement of different brain areas in temporal processing. At least two distinct neural systems are likely to play a role in measuring time: One is mainly constituted of subcortical structures and is supposed to be more related to the estimation of time intervals below the 1-sec range (subsecond timing tasks), and the other is mainly constituted of cortical areas and is supposed to be more related to the estimation of time intervals above the 1-sec range (suprasecond timing tasks). Tasks can then be performed in motor or nonmotor (perceptual) conditions, thus providing four different categories of time processing. Our meta-analytical investigation partly confirms the findings of previous meta-analytical works. Both sub- and suprasecond tasks recruit cortical and subcortical areas, but subcortical areas are more intensely activated in subsecond tasks than in suprasecond tasks, which instead receive more contributions from cortical activations. All the conditions, however, show strong activations in the SMA, whose rostral and caudal parts have an important role not only in the discrimination of different time intervals but also in relation to the nature of the task conditions. This area, along with the striatum (especially the putamen) and the claustrum, is supposed to be an essential node in the different networks engaged when the brain creates our sense of time.


Assuntos
Neuroimagem , Percepção do Tempo/fisiologia , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Humanos , Modelos Neurológicos , Modelos Psicológicos , Especificidade de Órgãos , Desempenho Psicomotor/fisiologia
14.
Neurosci Biobehav Rev ; 105: 231-248, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31412269

RESUMO

In the absence of the corpus callosum due to either surgical transection or congenital agenesis, the interhemispheric exchange of information is disrupted, as emphasized by several clinical studies. In such cases, a reduction of interhemispheric functional connectivity, that is, an increased independence of the functional signals of the two disconnected hemispheres, is expected to occur. A growing literature has investigated this hypothesis, and a number of studies were able to confirm it. However, this increased independence is not always observed, especially in congenital agenesis, in which the functional signals of the two hemispheres are often found to be characterized by synchronization or correlation. The extent of these counterintuitive findings and possible explanations are discussed. Overall, these findings highlight both methodological and theoretical considerations that emphasize the importance of subcortical structures, the preservation of which may underlie alternative pathways of functional connectivity and interhemispheric communication.


Assuntos
Agenesia do Corpo Caloso/fisiopatologia , Encéfalo/fisiopatologia , Conectoma , Corpo Caloso/fisiopatologia , Rede Nervosa/fisiopatologia , Vias Neurais/fisiopatologia , Agenesia do Corpo Caloso/patologia , Encéfalo/patologia , Corpo Caloso/patologia , Corpo Caloso/cirurgia , Humanos , Rede Nervosa/patologia , Vias Neurais/patologia
15.
Sci Rep ; 9(1): 3346, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833662

RESUMO

Homotopic connectivity (HC) is the connectivity between mirror areas of the brain hemispheres. It can exhibit a marked and functionally relevant spatial variability, and can be perturbed by several pathological conditions. The voxel-mirrored homotopic connectivity (VMHC) is a technique devised to enquire this pattern of brain organization, based on resting state functional connectivity. Since functional connectivity can be revealed also in a meta-analytical fashion using co-activations, here we propose to calculate the meta-analytic homotopic connectivity (MHC) as the meta-analytic counterpart of the VMHC. The comparison between the two techniques reveals their general similarity, but also highlights regional differences associated with how HC varies from task to rest. Two main differences were found from rest to task: (i) regions known to be characterized by global hubness are more similar than regions displaying local hubness; and (ii) medial areas are characterized by a higher degree of homotopic connectivity, while lateral areas appear to decrease their degree of homotopic connectivity during task performance. These findings show that MHC can be an insightful tool to study how the hemispheres functionally interact during task and rest conditions.

17.
Neuroimage ; 184: 359-371, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30237032

RESUMO

Growing evidence is challenging the assumption that brain disorders are diagnostically clear-cut categories. Transdiagnostic studies show that a set of cerebral areas is frequently altered in a variety of psychiatric as well as neurological syndromes. In order to provide a map of the altered areas in the pathological brain we devised a metric, called alteration entropy (A-entropy), capable of denoting the "structural alteration variety" of an altered region. Using the whole voxel-based morphometry database of BrainMap, we were able to differentiate the brain areas exhibiting a high degree of overlap between different neuropathologies (or high value of A-entropy) from those exhibiting a low degree of overlap (or low value of A-entropy). The former, which are parts of large-scale brain networks with attentional, emotional, salience, and premotor functions, are thought to be more vulnerable to a great range of brain diseases; while the latter, which include the sensorimotor, visual, inferior temporal, and supramarginal regions, are thought to be more informative about the specific impact of brain diseases. Since low A-entropy areas appear to be altered by a smaller number of brain disorders, they are more informative than the areas characterized by high values of A-entropy. It is also noteworthy that even the areas showing low values of A-entropy are substantially altered by a variety of brain disorders. In fact, no cerebral area appears to be only altered by a specific disorder. Our study shows that the overlap of areas with high A-entropy provides support for a transdiagnostic approach to brain disorders but, at the same time, suggests that fruitful differences can be traced among brain diseases, as some areas can exhibit an alteration profile more specific to certain disorders than to others.


Assuntos
Encefalopatias/diagnóstico por imagem , Encefalopatias/patologia , Mapeamento Encefálico/métodos , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Conjuntos de Dados como Assunto , Entropia , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética
18.
Data Brief ; 21: 1483-1495, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30510978

RESUMO

The data presented in this article are related to the research article entitled "The alteration landscape of the cerebral cortex" (Cauda et al., 2018). Here, we applied a metric called alteration negentropy (A-negentropy) on a large human neuroimaging dataset, in order to denote the "low structural alteration variety" of the altered brain areas. Furthermore, we reported the overview of the selection strategy, as well as the description and distribution of the selected studies from the voxel-based morphometry database of BrainMap (Vanasse et al., 2018). For all of the analyzed brain areas, we reported the number of pathologies affecting them (both local maxima and mean value), as well as the peak and average values of A-negentropy. Regions altered by a small number of brain disorders exhibit high values of A-negentropy.

19.
Brain ; 141(11): 3211-3232, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30346490

RESUMO

The pathological brain is characterized by distributed morphological or structural alterations in the grey matter, which tend to follow identifiable network-like patterns. We analysed the patterns formed by these alterations (increased and decreased grey matter values detected with the voxel-based morphometry technique) conducting an extensive transdiagnostic search of voxel-based morphometry studies in a large variety of brain disorders. We devised an innovative method to construct the networks formed by the structurally co-altered brain areas, which can be considered as pathological structural co-alteration patterns, and to compare these patterns with three associated types of connectivity profiles (functional, anatomical, and genetic). Our study provides transdiagnostical evidence that structural co-alterations are influenced by connectivity constraints rather than being randomly distributed. Analyses show that although all the three types of connectivity taken together can account for and predict with good statistical accuracy, the shape and temporal development of the co-alteration patterns, functional connectivity offers the better account of the structural co-alteration, followed by anatomic and genetic connectivity. These results shed new light on the possible mechanisms at the root of neuropathological processes and open exciting prospects in the quest for a better understanding of brain disorders.


Assuntos
Mapeamento Encefálico , Encéfalo/anatomia & histologia , Redes Reguladoras de Genes , Modelos Neurológicos , Vias Neurais/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Rede Nervosa/fisiologia , Vias Neurais/diagnóstico por imagem , Reprodutibilidade dos Testes , Adulto Jovem
20.
Neuroimage Clin ; 18: 15-30, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30023166

RESUMO

•In chronic pain, gray matter (GM) alterations are not distributed randomly across the brain.•The pattern of co-alterations resembles that of brain connectivity.•The alterations' distribution partly rely on the pathways of functional connectivity.•This method allows us to identify tendencies in the distribution of GM co-alteration related to chronic pain.


Assuntos
Encéfalo/diagnóstico por imagem , Dor Crônica/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Encéfalo/fisiopatologia , Dor Crônica/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/fisiopatologia , Plasticidade Neuronal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA