Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
PLoS One ; 19(4): e0301989, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683764

RESUMO

Somatic Y chromosome loss in hematopoietic cells is associated with higher mortality in men. However, the status of the Y chromosome in cancer tissue is not fully known due to technical limitations, such as difficulties in labelling and sequencing DNA from the Y chromosome. We have developed a system to quantify Y chromosome gain or loss in patient-derived prostate cancer organoids. Using our system, we observed Y chromosome loss in 4 of the 13 (31%) patient-derived metastatic castration-resistant prostate cancer (mCRPC) organoids; interestingly, loss of Yq (long arm of the Y chromosome) was seen in 38% of patient-derived organoids. Additionally, potential associations were observed between mCRPC and Y chromosome nullisomy. The prevalence of Y chromosome loss was similar in primary and metastatic tissue, suggesting that Y chromosome loss is an early event in prostate cancer evolution and may not a result of drug resistance or organoid derivation. This study reports quantification of Y chromosome loss and gain in primary and metastatic prostate cancer tissue and lays the groundwork for further studies investigating the clinical relevance of Y chromosome loss or gain in mCRPC.


Assuntos
Coloração Cromossômica , Cromossomos Humanos Y , Metástase Neoplásica , Masculino , Humanos , Cromossomos Humanos Y/genética , Metástase Neoplásica/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Organoides/patologia , Deleção Cromossômica
2.
Cancer Discov ; 13(1): 41-55, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36355783

RESUMO

With the combination of KRASG12C and EGFR inhibitors, KRAS is becoming a druggable target in colorectal cancer. However, secondary resistance limits its efficacy. Using cell lines, patient-derived xenografts, and patient samples, we detected a heterogeneous pattern of putative resistance alterations expected primarily to prevent inhibition of ERK signaling by drugs at progression. Serial analysis of patient blood samples on treatment demonstrates that most of these alterations are detected at a low frequency except for KRASG12C amplification, a recurrent resistance mechanism that rises in step with clinical progression. Upon drug withdrawal, resistant cells with KRASG12C amplification undergo oncogene-induced senescence, and progressing patients experience a rapid fall in levels of this alteration in circulating DNA. In this new state, drug resumption is ineffective as mTOR signaling is elevated. However, our work exposes a potential therapeutic vulnerability, whereby therapies that target the senescence response may overcome acquired resistance. SIGNIFICANCE: Clinical resistance to KRASG12C-EGFR inhibition primarily prevents suppression of ERK signaling. Most resistance mechanisms are subclonal, whereas KRASG12C amplification rises over time to drive a higher portion of resistance. This recurrent resistance mechanism leads to oncogene-induced senescence upon drug withdrawal and creates a potential vulnerability to senolytic approaches. This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Animais , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Transdução de Sinais , Modelos Animais de Doenças , Receptores ErbB , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Mutação
3.
Nature ; 608(7924): 795-802, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35978189

RESUMO

Although p53 inactivation promotes genomic instability1 and presents a route to malignancy for more than half of all human cancers2,3, the patterns through which heterogenous TP53 (encoding human p53) mutant genomes emerge and influence tumorigenesis remain poorly understood. Here, in a mouse model of pancreatic ductal adenocarcinoma that reports sporadic p53 loss of heterozygosity before cancer onset, we find that malignant properties enabled by p53 inactivation are acquired through a predictable pattern of genome evolution. Single-cell sequencing and in situ genotyping of cells from the point of p53 inactivation through progression to frank cancer reveal that this deterministic behaviour involves four sequential phases-Trp53 (encoding mouse p53) loss of heterozygosity, accumulation of deletions, genome doubling, and the emergence of gains and amplifications-each associated with specific histological stages across the premalignant and malignant spectrum. Despite rampant heterogeneity, the deletion events that follow p53 inactivation target functionally relevant pathways that can shape genomic evolution and remain fixed as homogenous events in diverse malignant populations. Thus, loss of p53-the 'guardian of the genome'-is not merely a gateway to genetic chaos but, rather, can enable deterministic patterns of genome evolution that may point to new strategies for the treatment of TP53-mutant tumours.


Assuntos
Carcinogênese , Progressão da Doença , Genes p53 , Genoma , Perda de Heterozigosidade , Neoplasias Pancreáticas , Proteína Supressora de Tumor p53 , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Carcinogênese/genética , Carcinogênese/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Evolução Molecular , Deleção de Genes , Genes p53/genética , Genoma/genética , Camundongos , Modelos Genéticos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteína Supressora de Tumor p53/genética
4.
Endocr Pathol ; 33(2): 304-314, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34549366

RESUMO

Molecular characterization of adrenocortical carcinomas (ACC) by The Cancer Genome Atlas (TCGA) has highlighted a high prevalence of TERT alterations, which are associated with disease progression. Herein, 78 ACC were profiled using a combination of next generation sequencing (n = 76) and FISH (n = 9) to assess for TERT alterations. This data was combined with TCGA dataset (n = 91). A subset of borderline adrenocortical tumors (n = 5) and adrenocortical adenomas (n = 7) were also evaluated. The most common alteration involving the TERT gene involved gains/amplifications, seen in 22.2% (37/167) of cases. In contrast, "hotspot" promoter mutations (C > T promoter mutation at position -124, 7/167 cases, 4.2%) and promoter rearrangements (2/165, 1.2%) were rare. Recurrent co-alterations included 22q copy number losses seen in 24% (9/38) of cases. Although no significant differences were identified in cases with and without TERT alterations pertaining to age at presentation, tumor size, weight, laterality, mitotic index and Ki67 labeling, cases with TERT alterations showed worse outcomes. Metastatic behavior was seen in 70% (28/40) of cases with TERT alterations compared to 51.2% (65/127, p = 0.04) of cases that lacked these alterations. Two (of 5) borderline tumors showed amplifications and no TERT alterations were identified in 7 adenomas. In the borderline group, 0 (of 4) patients with available follow up had adverse outcomes. We found that TERT alterations in ACC predominantly involve gene amplifications, with a smaller subset harboring "hotspot" promoter mutations and rearrangements, and 70% of TERT-altered tumors are associated with metastases. Prospective studies are needed to validate the prognostic impact of these findings.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Telomerase , Neoplasias do Córtex Suprarrenal/genética , Carcinoma Adrenocortical/genética , Carcinoma Adrenocortical/patologia , Variações do Número de Cópias de DNA , Humanos , Mutação , Telomerase/genética
5.
Mod Pathol ; 35(2): 193-201, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34599282

RESUMO

Classic adenoid cystic carcinomas (C-AdCCs) of the breast are rare, relatively indolent forms of triple negative cancers, characterized by recurrent MYB or MYBL1 genetic alterations. Solid and basaloid adenoid cystic carcinoma (SB-AdCC) is considered a rare variant of AdCC yet to be fully characterized. Here, we sought to determine the clinical behavior and repertoire of genetic alterations of SB-AdCCs. Clinicopathologic data were collected on a cohort of 104 breast AdCCs (75 C-AdCCs and 29 SB-AdCCs). MYB expression was assessed by immunohistochemistry and MYB-NFIB and MYBL1 gene rearrangements were investigated by fluorescent in-situ hybridization. AdCCs lacking MYB/MYBL1 rearrangements were subjected to RNA-sequencing. Targeted sequencing data were available for 9 cases. The invasive disease-free survival (IDFS) and overall survival (OS) were assessed in C-AdCC and SB-AdCC. SB-AdCCs have higher histologic grade, and more frequent nodal and distant metastases than C-AdCCs. MYB/MYBL1 rearrangements were significantly less frequent in SB-AdCC than C-AdCC (3/14, 21% vs 17/20, 85% P < 0.05), despite the frequent MYB expression (9/14, 64%). In SB-AdCCs lacking MYB rearrangements, CREBBP, KMT2C, and NOTCH1 alterations were observed in 2 of 4 cases. SB-AdCCs displayed a shorter IDFS than C-AdCCs (46.5 vs 151.8 months, respectively, P < 0.001), independent of stage. In summary, SB-AdCCs are a molecularly heterogeneous but clinically aggressive group of tumors. Less than 25% of SB-AdCCs display the genomic features of C-AdCC. Defining whether these tumors represent a single entity or a collection of different cancer types with a similar basaloid histologic appearance is warranted.


Assuntos
Carcinoma Adenoide Cístico , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/patologia , Genômica , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Proteínas de Fusão Oncogênica/genética
6.
Mol Cancer Ther ; 21(2): 382-394, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34789562

RESUMO

Hurthle cell carcinomas (HCCs) are refractory to radioactive iodine and unresponsive to chemotherapeutic agents, with a fatality rate that is the highest among all types of thyroid cancer after anaplastic thyroid cancer. Our previous study on the genomic landscape of HCCs identified a high incidence of disruptions of mTOR pathway effectors. Here, we report a detailed analysis of mTOR signaling in cell line and patient-derived xenograft mouse models of HCCs. We show that mTOR signaling is upregulated and that targeting mTOR signaling using mTOR inhibitors suppresses tumor growth in primary tumors and distant metastasis. Mechanistically, ablation of mTOR signaling impaired the expression of p-S6 and cyclin A2, resulting in the decrease of the S phase and blocking of cancer cell proliferation. Strikingly, mTOR inhibitor treatment significantly reduced lung metastatic lesions, with the decreased expression of Snail in xenograft tumors. Our data demonstrate that mTOR pathway blockade represents a novel treatment strategy for HCC.


Assuntos
Adenoma Oxífilo/genética , Neoplasias/genética , Serina-Treonina Quinases TOR/genética , Neoplasias da Glândula Tireoide/genética , Adenoma Oxífilo/patologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos SCID , Neoplasias/patologia , Neoplasias da Glândula Tireoide/patologia
7.
Oncogene ; 41(5): 671-682, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34802033

RESUMO

Chromosome 8q gain is associated with poor clinical outcomes in prostate cancer, but the underlying biological mechanisms remain to be clarified. CSN5, a putative androgen receptor (AR) partner that is located on chromosome 8q, is the key subunit of the COP9 signalosome, which deactivates ubiquitin ligases. Deregulation of CSN5 could affect diverse cellular functions that contribute to tumor development, but there has been no comprehensive study of its function in prostate cancer. The clinical significance of CSN5 amplification/overexpression was evaluated in 16 prostate cancer clinical cohorts. Its oncogenic activity was assessed by genetic and pharmacologic perturbations of CSN5 activity in prostate cancer cell lines. The molecular mechanisms of CSN5 function were assessed, as was the efficacy of the CSN5 inhibitor CSN5i-3 in vitro and in vivo. Finally, the transcription cofactor activity of CSN5 in prostate cancer cells was determined. The prognostic significance of CSN5 amplification and overexpression in prostate cancer was independent of MYC amplification. Inhibition of CSN5 inhibited its oncogenic function by targeting AR signaling, DNA repair, multiple oncogenic pathways, and spliceosome regulation. Furthermore, inhibition of CSN5 repressed metabolic pathways, including oxidative phosphorylation and glycolysis in AR-negative prostate cancer cells. Targeting CSN5 with CSN5i-3 showed potent antitumor activity in vitro and in vivo. Importantly, CSN5i-3 synergizes with PARP inhibitors to inhibit prostate cancer cell growth. CSN5 functions as a transcription cofactor to cooperate with multiple transcription factors in prostate cancer. Inhibiting CSN5 strongly attenuates prostate cancer progression and could enhance PARP inhibition efficacy in the treatment of prostate cancer.


Assuntos
Complexo do Signalossomo COP9
8.
Hum Pathol ; 104: 105-116, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32818509

RESUMO

SMARCB1-deficient sinonasal carcinoma (SNC) is an aggressive malignancy characterized by INI1 loss mostly owing to homozygous SMARCB1 deletion. With the exception of a few reported cases, these tumors have not been thoroughly studied by massive parallel sequencing (MPS). A retrospective cohort of 22 SMARCB1-deficient SNCs were studied by light microscopy, immunohistochemistry, fluorescence in situ hybridization (n = 9), targeted exome MPS (n = 12), and Fraction and Allele-Specific Copy Number Estimates from Tumor Sequencing (FACETS) (n = 10), a bioinformatics pipeline for copy number/zygosity assessment. SMARCB1-deficient SNC was found in 13 (59%) men and 9 (41%) women. Most common growth patterns were the basaloid pattern (59%), occurring mostly in men (77%), and plasmacytoid/eosinophilic/rhabdoid pattern (23%), arising mostly in women (80%). The former group was significantly younger (median age = 46 years, range = 24-54, vs 79 years, range = 66-95, p < 0.0001). Clear cell, pseudoglandular, glandular, spindle cell, and sarcomatoid features were variably present. SMARCB1-deficient SNC expressed cytokeratin (100%), p63 (72%), neuroendocrine markers (52%), CDX-2 (44%), S-100 (25%), CEA (4/4 cases), Hepatocyte (2/2 cases), and aberrant nuclear ß-catenin (1/1 case). SMARCB1 showed homozygous deletion (68%), hemizygous deletion (16%), or truncating mutations associated with copy neutral loss of heterozygosity (11%). Coexisting genetic alterations were 22q loss including loss of NF2 and CHEK2 (50%), chromosome 7 gain (25%), and TP53 V157F, CDKN2A W110∗, and CTNNB1 S45F mutations. At 2 years and 5 years, the disease-specific survival and disease-free survival were 70% and 35% and 13% and 0%, respectively. SMARCB1-deficient SNCs are phenotypically and genetically diverse, and these distinctions warrant further investigation for their biological and clinical significance.


Assuntos
Biomarcadores Tumorais/genética , Heterogeneidade Genética , Neoplasias Nasais/genética , Neoplasias dos Seios Paranasais/genética , Proteína SMARCB1/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/deficiência , Intervalo Livre de Doença , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Estadiamento de Neoplasias , Neoplasias Nasais/química , Neoplasias Nasais/patologia , Neoplasias Nasais/terapia , Neoplasias dos Seios Paranasais/química , Neoplasias dos Seios Paranasais/patologia , Neoplasias dos Seios Paranasais/terapia , Fenótipo , Estudos Retrospectivos , Proteína SMARCB1/deficiência , Fatores de Tempo , Adulto Jovem
9.
Prostate Cancer Prostatic Dis ; 23(3): 507-516, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32094488

RESUMO

BACKGROUND: Molecular and immunohistochemistry-based profiling of prostatic adenocarcinoma has revealed frequent Androgen Receptor (AR) gene and protein alterations in metastatic disease. This includes an AR-null non-neuroendocrine phenotype of metastatic castrate resistant prostate cancer which may be less sensitive to androgen receptor signaling inhibitors. This AR-null non-neuroendocrine phenotype is thought to be associated with TP53 and RB1 alterations. Herein, we have correlated molecular profiling of metastatic castrate resistant prostate cancer with AR/P53/RB immunohistochemistry and relevant clinical correlates. DESIGN: Twenty-seven cases of metastatic castrate resistant prostate cancer were evaluated using histopathologic examination to rule out neuroendocrine differentiation. A combination of a hybridization exon-capture next-generation sequencing-based assay (n = 26), fluorescence in situ hybridization for AR copy number status (n = 16), and immunohistochemistry for AR (n = 27), P53 (n = 24) and RB (n = 25) was used to profile these cases. RESULTS: Of 27 metastatic castrate resistant prostate cancer cases, 17 had AR amplification and showed positive nuclear expression of AR by immunohistochemistry. Nine cases lacked AR copy number alterations using next-generation sequencing/fluorescence in situ hybridization. A subset of these metastatic castrate resistant prostate cancer cases demonstrated the AR-null phenotype by immunohistochemistry (five cases and one additional case where next-generation sequencing failed). Common co-alterations in these cases involved the TP53, RB1, and PTEN genes and all these patients received prior therapy with androgen receptor signaling inhibitors (abiraterone and/or enzalutamide). CONCLUSIONS: Our study suggests that AR immunohistochemistry may distinguish AR-null from AR-expressing cases in the metastatic setting. AR-null status informs clinical decision-making regarding continuation of therapy with androgen receptor signaling inhibitors and consideration of other treatment options. This might be a relevant and cost-effective diagnostic strategy when there is limited access and/or limited tumor material for molecular testing.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Antineoplásicos Hormonais/farmacologia , Biomarcadores Tumorais/análise , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/análise , Idoso , Antagonistas de Receptores de Andrógenos/uso terapêutico , Antineoplásicos Hormonais/uso terapêutico , Biomarcadores Tumorais/genética , Biópsia , Variações do Número de Cópias de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Amplificação de Genes , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Proteínas de Ligação a Retinoblastoma/análise , Proteínas de Ligação a Retinoblastoma/genética , Proteína Supressora de Tumor p53/análise , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/análise , Ubiquitina-Proteína Ligases/genética
10.
Nat Cancer ; 1(1): 59-74, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-35118421

RESUMO

Pancreatic cancer expression profiles largely reflect a classical or basal-like phenotype. The extent to which these profiles vary within a patient is unknown. We integrated evolutionary analysis and expression profiling in multiregion-sampled metastatic pancreatic cancers, finding that squamous features are the histologic correlate of an RNA-seq-defined basal-like subtype. In patients with coexisting basal and squamous and classical and glandular morphology, phylogenetic studies revealed that squamous morphology represented a subclonal population in an otherwise classical and glandular tumor. Cancers with squamous features were significantly more likely to have clonal mutations in chromatin modifiers, intercellular heterogeneity for MYC amplification and entosis. These data provide a unifying paradigm for integrating basal-type expression profiles, squamous histology and somatic mutations in chromatin modifier genes in the context of clonal evolution of pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Carcinoma de Células Escamosas , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/genética , Carcinoma de Células Escamosas/genética , Cromatina , Humanos , Neoplasias Pancreáticas/genética , Filogenia , Neoplasias Pancreáticas
11.
Clin Cancer Res ; 26(8): 2047-2064, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31796516

RESUMO

PURPOSE: Previous sequencing studies revealed that alterations of genes associated with DNA damage response (DDR) are enriched in men with metastatic castration-resistant prostate cancer (mCRPC). BRCA2, a DDR and cancer susceptibility gene, is frequently deleted (homozygous and heterozygous) in men with aggressive prostate cancer. Here we show that patients with prostate cancer who have lost a copy of BRCA2 frequently lose a copy of tumor suppressor gene RB1; importantly, for the first time, we demonstrate that co-loss of both genes in early prostate cancer is sufficient to induce a distinct biology that is likely associated with worse prognosis. EXPERIMENTAL DESIGN: We prospectively investigated underlying molecular mechanisms and genomic consequences of co-loss of BRCA2 and RB1 in prostate cancer. We used CRISPR-Cas9 and RNAi-based methods to eliminate these two genes in prostate cancer cell lines and subjected them to in vitro studies and transcriptomic analyses. We developed a 3-color FISH assay to detect genomic deletions of BRCA2 and RB1 in prostate cancer cells and patient-derived mCRPC organoids. RESULTS: In human prostate cancer cell lines (LNCaP and LAPC4), loss of BRCA2 leads to the castration-resistant phenotype. Co-loss of BRCA2-RB1 in human prostate cancer cells induces an epithelial-to-mesenchymal transition, which is associated with invasiveness and a more aggressive disease phenotype. Importantly, PARP inhibitors attenuate cell growth in human mCRPC-derived organoids and human CRPC cells harboring single-copy loss of both genes. CONCLUSIONS: Our findings suggest that early identification of this aggressive form of prostate cancer offers potential for improved outcomes with early introduction of PARP inhibitor-based therapy.See related commentary by Mandigo and Knudsen, p. 1784.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Proteína BRCA2 , Biomarcadores Tumorais , Genes BRCA2 , Humanos , Masculino , Fenótipo , Neoplasias de Próstata Resistentes à Castração/genética
12.
Mod Pathol ; 32(9): 1329-1343, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30980040

RESUMO

Renal medullary carcinoma is a rare but highly aggressive type of renal cancer occurring in patients with sickle cell trait or rarely with other hemoglobinopathies. Loss of SMARCB1 protein expression, a core subunit of the switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex, has emerged as a key diagnostic feature of these tumors. However, the molecular mechanism underlying this loss remains unclear. We retrospectively identified 20 patients diagnosed with renal medullary carcinoma at two institutions from 1996 to 2017. All patients were confirmed to have sickle cell trait, and all tumors exhibited a loss of SMARCB1 protein expression by immunohistochemistry. The status of SMARCB1 locus was examined by fluorescence in situ hybridization (FISH) using 3-color probes, and somatic alterations were detected by targeted next-generation sequencing platforms. FISH analysis of all 20 cases revealed 11 (55%) with concurrent hemizygous loss and translocation of SMARCB1, 6 (30%) with homozygous loss of SMARCB1, and 3 (15%) without structural or copy number alterations of SMARCB1 despite protein loss. Targeted sequencing revealed a pathogenic somatic mutation of SMARCB1 in one of these 3 cases that were negative by FISH. Tumors in the 3 subsets with different FISH findings largely exhibited similar clinicopathologic features, however, homozygous SMARCB1 deletion was found to show a significant association with the solid growth pattern, whereas tumors dominated by reticular/cribriform growth were enriched for SMARCB1 translocation. Taken together, we demonstrate that different molecular mechanisms underlie the loss of SMARCB1 expression in renal medullary carcinoma. Biallelic inactivation of SMARCB1 occurs in a large majority of cases either via concurrent hemizygous loss and translocation disrupting SMARCB1 or by homozygous loss.


Assuntos
Carcinoma Medular/genética , Neoplasias Renais/genética , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Adolescente , Adulto , Carcinoma Medular/metabolismo , Criança , Feminino , Variação Genética , Humanos , Neoplasias Renais/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
Cancer Discov ; 9(2): 199-209, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30463996

RESUMO

The anti-HER2 antibody trastuzumab is standard care for advanced esophagogastric (EG) cancer with ERBB2 (HER2) amplification or overexpression, but intrinsic and acquired resistance are common. We conducted a phase II study of afatinib, an irreversible pan-HER kinase inhibitor, in trastuzumab-resistant EG cancer. We analyzed pretreatment tumor biopsies and, in select cases, performed comprehensive characterization of postmortem metastatic specimens following acquisition of drug resistance. Afatinib response was associated with coamplification of EGFR and ERBB2. Heterogeneous 89Zr-trastuzumab PET uptake was associated with genomic heterogeneity and mixed clinical response to afatinib. Resistance to afatinib was associated with selection for tumor cells lacking EGFR amplification or with acquisition of MET amplification, which could be detected in plasma cell-free DNA. The combination of afatinib and a MET inhibitor induced complete tumor regression in ERBB2 and MET coamplified patient-derived xenograft models established from a metastatic lesion progressing on afatinib. Collectively, differential intrapatient and interpatient expression of HER2, EGFR, and MET may determine clinical response to HER kinase inhibitors in ERBB2-amplified EG cancer. SIGNIFICANCE: Analysis of patients with ERBB2-amplified, trastuzumab-resistant EG cancer who were treated with the HER kinase inhibitor afatinib revealed that sensitivity and resistance to therapy were associated with EGFR/ERBB2 coamplification and MET amplification, respectively. HER2-directed PET imaging and cell-free DNA sequencing could help guide strategies to overcome the emergence of resistant clones.See related commentary by Klempner and Catenacci, p. 166.This article is highlighted in the In This Issue feature, p. 151.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Esofágicas/patologia , Amplificação de Genes , Proteínas Proto-Oncogênicas c-met/genética , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Neoplasias Gástricas/patologia , Afatinib/administração & dosagem , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Junção Esofagogástrica/patologia , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Trastuzumab/administração & dosagem
14.
J Clin Invest ; 128(7): 2979-2995, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29863497

RESUMO

Epigenetic modifications control cancer development and clonal evolution in various cancer types. Here, we show that loss of the male-specific histone demethylase lysine-specific demethylase 5D (KDM5D) encoded on the Y chromosome epigenetically modifies histone methylation marks and alters gene expression, resulting in aggressive prostate cancer. Fluorescent in situ hybridization demonstrated that segmental or total deletion of the Y chromosome in prostate cancer cells is one of the causes of decreased KDM5D mRNA expression. The result of ChIP-sequencing analysis revealed that KDM5D preferably binds to promoter regions with coenrichment of the motifs of crucial transcription factors that regulate the cell cycle. Loss of KDM5D expression with dysregulated H3K4me3 transcriptional marks was associated with acceleration of the cell cycle and mitotic entry, leading to increased DNA-replication stress. Analysis of multiple clinical data sets reproducibly showed that loss of expression of KDM5D confers a poorer prognosis. Notably, we also found stress-induced DNA damage on the serine/threonine protein kinase ATR with loss of KDM5D. In KDM5D-deficient cells, blocking ATR activity with an ATR inhibitor enhanced DNA damage, which led to subsequent apoptosis. These data start to elucidate the biological characteristics resulting from loss of KDM5D and also provide clues for a potential novel therapeutic approach for this subset of aggressive prostate cancer.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Histona Desmetilases/deficiência , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Cromossomos Humanos Y/genética , Dano ao DNA , Epigênese Genética , Dosagem de Genes , Técnicas de Silenciamento de Genes , Código das Histonas/genética , Histona Desmetilases/genética , Humanos , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Antígenos de Histocompatibilidade Menor/genética , Neoplasias da Próstata/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/enzimologia , Neoplasias de Próstata Resistentes à Castração/genética , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Nat Commun ; 8(1): 1197, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084941

RESUMO

Myoepithelial carcinoma (MECA) is an aggressive salivary gland cancer with largely unknown genetic features. Here we comprehensively analyze molecular alterations in 40 MECAs using integrated genomic analyses. We identify a low mutational load, and high prevalence (70%) of oncogenic gene fusions. Most fusions involve the PLAG1 oncogene, which is associated with PLAG1 overexpression. We find FGFR1-PLAG1 in seven (18%) cases, and the novel TGFBR3-PLAG1 fusion in six (15%) cases. TGFBR3-PLAG1 promotes a tumorigenic phenotype in vitro, and is absent in 723 other salivary gland tumors. Other novel PLAG1 fusions include ND4-PLAG1; a fusion between mitochondrial and nuclear DNA. We also identify higher number of copy number alterations as a risk factor for recurrence, independent of tumor stage at diagnosis. Our findings indicate that MECA is a fusion-driven disease, nominate TGFBR3-PLAG1 as a hallmark of MECA, and provide a framework for future diagnostic and therapeutic research in this lethal cancer.


Assuntos
Genômica/métodos , Mioepitelioma/genética , Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/genética , Neoplasias das Glândulas Salivares/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Feminino , Células HEK293 , Humanos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Mutação , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Análise de Sequência de DNA/métodos , Adulto Jovem
16.
JCI Insight ; 2(12)2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28614790

RESUMO

Chromophobe renal cell carcinoma (chRCC) typically shows ~7 chromosome losses (1, 2, 6, 10, 13, 17, and 21) and ~31 exonic somatic mutations, yet carries ~5%-10% metastatic incidence. Since extensive chromosomal losses can generate proteotoxic stress and compromise cellular proliferation, it is intriguing how chRCC, a tumor with extensive chromosome losses and a low number of somatic mutations, can develop lethal metastases. Genomic features distinguishing metastatic from nonmetastatic chRCC are unknown. An integrated approach, including whole-genome sequencing (WGS), targeted ultradeep cancer gene sequencing, and chromosome analyses (FACETS, OncoScan, and FISH), was performed on 79 chRCC patients including 38 metastatic (M-chRCC) cases. We demonstrate that TP53 mutations (58%), PTEN mutations (24%), and imbalanced chromosome duplication (ICD, duplication of ≥ 3 chromosomes) (25%) were enriched in M-chRCC. Reconstruction of the subclonal composition of paired primary-metastatic chRCC tumors supports the role of TP53, PTEN, and ICD in metastatic evolution. Finally, the presence of these 3 genomic features in primary tumors of both The Cancer Genome Atlas kidney chromophobe (KICH) (n = 64) and M-chRCC (n = 35) cohorts was associated with worse survival. In summary, our study provides genomic insights into the metastatic progression of chRCC and identifies TP53 mutations, PTEN mutations, and ICD as high-risk features.

17.
Clin Genitourin Cancer ; 15(6): e987-e994, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28558987

RESUMO

BACKGROUND: Renal medullary carcinoma (RMC) is a rare and aggressive type of kidney cancer that primarily affects young adults with sickle cell trait; outcomes are poor despite treatment. Identifying molecular features of this tumor could provide biologic rationale for novel targeted therapies. The objective was to report on clinical outcomes with systemic therapy and characterize molecular features. PATIENTS AND METHODS: This was a retrospective analysis on 36 patients given a pathologic diagnosis of RMC at one institution from 1995 to 2015. Tumors were analyzed for expression of SWI/SNF Related, Matrix Associated, Actin Dependent Regulator Of Chromatin, Subfamily B, Member 1 (SMARCB1) through immunohistochemistry and for genomic alterations with fluorescence in situ hybridization for SMARCB1, and targeted next-generation sequencing. Time from initiation of therapy to progression of disease and overall survival were calculated using the Kaplan-Meier method. RESULTS: The median age in the cohort was 28 (range, 12-72) years, and all patients tested had sickle cell trait. Overall survival was 5.8 months (95% confidence interval [CI], 4.1-10.9) and for 12 patients who received platinum-based therapy, median progression-free survival was 2.5 months (95% CI, 1.2-not reached). A total of 10 available tumors underwent analysis with fluorescence in situ hybridization for SMARCB1; this revealed loss of heterozygosity with concurrent translocation in 8, and biallelic loss in 2. Next-generation targeted sequencing showed no recurring mutations. CONCLUSIONS: Outcome was generally poor in this cohort of patients with RMC. Uniform loss of SMARCB1 is a key molecular feature in this tumor and mechanism of loss appears to be mostly through translocations and deletions.


Assuntos
Carcinoma Medular/tratamento farmacológico , Neoplasias Renais/tratamento farmacológico , Platina/uso terapêutico , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Translocação Genética , Adolescente , Adulto , Idoso , Carcinoma Medular/genética , Carcinoma Medular/metabolismo , Criança , Feminino , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Masculino , Pessoa de Meia-Idade , Variantes Farmacogenômicos , Estudos Retrospectivos , Análise de Sequência de DNA , Análise de Sobrevida , Resultado do Tratamento , Adulto Jovem
18.
Development ; 143(21): 4038-4052, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27803059

RESUMO

Microcephaly and medulloblastoma may both result from mutations that compromise genomic stability. We report that ATR, which is mutated in the microcephalic disorder Seckel syndrome, sustains cerebellar growth by maintaining chromosomal integrity during postnatal neurogenesis. Atr deletion in cerebellar granule neuron progenitors (CGNPs) induced proliferation-associated DNA damage, p53 activation, apoptosis and cerebellar hypoplasia in mice. Co-deletions of either p53 or Bax and Bak prevented apoptosis in Atr-deleted CGNPs, but failed to fully rescue cerebellar growth. ATR-deficient CGNPs had impaired cell cycle checkpoint function and continued to proliferate, accumulating chromosomal abnormalities. RNA-Seq demonstrated that the transcriptional response to ATR-deficient proliferation was highly p53 dependent and markedly attenuated by p53 co-deletion. Acute ATR inhibition in vivo by nanoparticle-formulated VE-822 reproduced the developmental disruptions seen with Atr deletion. Genetic deletion of Atr blocked tumorigenesis in medulloblastoma-prone SmoM2 mice. Our data show that p53-driven apoptosis and cell cycle arrest - and, in the absence of p53, non-apoptotic cell death - redundantly limit growth in ATR-deficient progenitors. These mechanisms may be exploited for treatment of CGNP-derived medulloblastoma using ATR inhibition.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias Cerebelares/genética , Cerebelo/crescimento & desenvolvimento , Instabilidade Cromossômica/genética , Meduloblastoma/genética , Neurogênese/genética , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Transformação Celular Neoplásica/efeitos dos fármacos , Neoplasias Cerebelares/patologia , Cerebelo/anormalidades , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Cerebelo/patologia , Instabilidade Cromossômica/efeitos dos fármacos , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Feminino , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Isoxazóis/farmacologia , Masculino , Meduloblastoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Pirazinas/farmacologia
19.
Nat Commun ; 7: 13131, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713405

RESUMO

Renal cell carcinomas with unclassified histology (uRCC) constitute a significant portion of aggressive non-clear cell renal cell carcinomas that have no standard therapy. The oncogenic drivers in these tumours are unknown. Here we perform a molecular analysis of 62 high-grade primary uRCC, incorporating targeted cancer gene sequencing, RNA sequencing, single-nucleotide polymorphism array, fluorescence in situ hybridization, immunohistochemistry and cell-based assays. We identify recurrent somatic mutations in 29 genes, including NF2 (18%), SETD2 (18%), BAP1 (13%), KMT2C (10%) and MTOR (8%). Integrated analysis reveals a subset of 26% uRCC characterized by NF2 loss, dysregulated Hippo-YAP pathway and worse survival, whereas 21% uRCC with mutations of MTOR, TSC1, TSC2 or PTEN and hyperactive mTORC1 signalling are associated with better clinical outcome. FH deficiency (6%), chromatin/DNA damage regulator mutations (21%) and ALK translocation (2%) distinguish additional cases. Altogether, this study reveals distinct molecular subsets for 76% of our uRCC cohort, which could have diagnostic and therapeutic implications.


Assuntos
Carcinoma de Células Renais/genética , Dano ao DNA/genética , Neoplasias Renais/genética , Proteínas de Neoplasias/genética , Proteínas Supressoras de Tumor/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Células HEK293 , Histona-Lisina N-Metiltransferase/genética , Humanos , Hibridização in Situ Fluorescente , Neoplasias Renais/patologia , Neurofibromatose 2/genética , Polimorfismo de Nucleotídeo Único/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Ubiquitina Tiolesterase/genética
20.
Mol Cancer Ther ; 14(1): 278-88, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25381262

RESUMO

Copy-number alterations (CNA) are among the most common molecular events in human prostate cancer genomes and are associated with worse prognosis. Identification of the oncogenic drivers within these CNAs is challenging due to the broad nature of these genomic gains or losses which can include large numbers of genes within a given region. Here, we profiled the genomes of four genetically engineered mouse prostate cancer models that reflect oncogenic events common in human prostate tumors, with the goal of integrating these data with human prostate cancer datasets to identify shared molecular events. Met was amplified in 67% of prostate tumors from Pten p53 prostate conditional null mice and in approximately 30% of metastatic human prostate cancer specimens, often in association with loss of PTEN and TP53. In murine tumors with Met amplification, Met copy-number gain and expression was present in some cells but not others, revealing intratumoral heterogeneity. Forced MET overexpression in non-MET-amplified prostate tumor cells activated PI3K and MAPK signaling and promoted cell proliferation and tumor growth, whereas MET kinase inhibition selectively impaired the growth of tumors with Met amplification. However, the impact of MET inhibitor therapy was compromised by the persistent growth of non-Met-amplified cells within Met-amplified tumors. These findings establish the importance of MET in prostate cancer progression but reveal potential limitations in the clinical use of MET inhibitors in late-stage prostate cancer.


Assuntos
PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-met/genética , Proteína Supressora de Tumor p53/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Variações do Número de Cópias de DNA , Amplificação de Genes , Perfilação da Expressão Gênica , Heterogeneidade Genética , Genoma , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais , Inibidores de Proteínas Quinases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA