Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Ergon ; 116: 104183, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38071785

RESUMO

This study aimed to determine gravitational and dynamic torques and muscle activity of the neck across a series of design parameters of head mounted displays (mass, center of mass, and counterweights) associated with virtual and augmented reality (VR/AR). Twenty young adult participants completed five movement types (Slow and Fast Flexion/Extension and Rotation, and Search) while wearing a custom-designed prototype headset that varied the three design parameters: display mass (0, 200, 500, and 750 g), distance of the display's center of mass in front of the eyes (approximately 1, 3, and 5 cm anteriorly), and counterweights of 0, 166, 332, and 500 g to balance the display mass of 500 g at 7 cm. Inverse dynamics of a link segment model of the head and headset provided estimates of the torques about the joint between the skull and the occiput-first cervical vertebrae (OC1) and joint between the C7 and T1 vertebrae (C7). Surface electromyography (EMG) measured bilateral muscle activity of the splenius and upper trapezius muscles. Adding 750 g of display mass nearly doubled root mean square joint torques across all movement types. Increasing the distance of the display mass in front of the eyes by 4 cm increased torques about OC1 for the Slow and Fast Rotation and Search movements by approximately 20%. Adding a counterweight decreased torques about OC1 during the rotation and search tasks but did not decrease the torques experienced in the lower cervical spine (C7). For the flexion/extension axis, the magnitude of the dynamic torque component was 20% or less of the total torque experienced whereas for the rotation axis the magnitude of the dynamic torque component was greater than 50% of the total torque. Surface EMG root mean square values significantly varied across movement types with the fast rotation having the largest values; however, they did not vary significantly across the headset configurations.


Assuntos
Realidade Aumentada , Humanos , Torque , Articulações/fisiologia , Movimento/fisiologia , Vértebras Cervicais , Fenômenos Biomecânicos
2.
Bone ; 165: 116547, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36113842

RESUMO

Mechanical stimulation is critical to maintaining bone mass and strength. Strain has been commonly thought of as the mechanical stimulus driving bone adaptation. However, numerous studies have hypothesized that fluid flow in the lacunar-canalicular system plays a role in mechanoadaptation. The role of fluid flow compared to strain magnitude on bone remodeling has yet to be characterized. This study aimed to determine the contribution of fluid flow velocity compared to strain on bone adaptation. We used finite element modeling to design in vivo experiments, manipulating strain and fluid flow contributions. Using a uniaxial compression tibia model in mice, we demonstrated that high fluid flow velocity results in significant bone adaptation even under low strain magnitude. In contrast, high strain magnitude paired with low fluid velocity does not trigger a bone response. These findings support previous hypotheses stating that fluid flow is the principal mechanical stimulus driving bone adaptation. Moreover, they give new insights regarding bone adaptative response and provide new pathways toward treatment against age-related mechanosensitivity loss in bone.


Assuntos
Osso e Ossos , Modelos Biológicos , Camundongos , Animais , Adaptação Fisiológica , Tíbia/diagnóstico por imagem , Tíbia/fisiologia , Remodelação Óssea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA