Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; : 908-914, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990566

RESUMO

We propose a methodology to characterize the crystalline content of interfacial polymer layers in systems confined at the nanoscale level in a 2D geometry. Based on the crystallinity data of a set of polymers, we introduce a simple model to describe the gradient in crystallinity introduced by confining polymer chains in nanopores. Our model underscores the pivotal role that interfaces play in crystallization and unequivocally contradicts the existence of interfacial "dead" layers where crystallization cannot take place. Further, we verified that the organization of crystals near the pore walls resembles the macromolecular architecture of adsorbed layers, hinting at a strong interplay between crystallization and adsorption.

2.
Phys Rev Lett ; 132(24): 248101, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38949357

RESUMO

We determine the adsorption rate of polymer melts by means of measurements of molecular mobility. We show that the complex set of molecular rearrangements involved in the adsorption of polymers on flat surfaces can be modeled as an equilibration kinetics driven by the slow Arrhenius process (SAP), a recently discovered molecular mechanism. Our predictive model is based on the single hypothesis that the number of chains adsorbed per unit surface within the timescale of spontaneous fluctuations associated to the SAP is a temperature-invariant constant, not depending on the chemical structure of the polymer. Going beyond the qualitative arguments setting a correlation between equilibrium and nonequilibrium properties, we demonstrate that the rate at which an adsorbed layer grows does not depend on interfacial interactions. By considering simple physical arguments, we demonstrate that this quantity can be straightforwardly determined using the energy barrier of molecular motion as only input.

3.
J Phys Chem Lett ; 15(18): 4838-4843, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38668717

RESUMO

Polymer materials are commonly processed at rates higher than those at which their molecules spontaneously reach equilibrium conditions. The resulting nonequilibrium conformations might significantly affect the mechanical behavior and the shelf time of the final products. To understand how processing-properties relations work, we investigated the impact of spin coating, an archetypical method to fabricate thin polymer layers. By using a geometry in which nonequilibrium conformations are frozen over sufficiently long experimental times, we could identify how molecular relaxation is affected by fast preparation methods. We find that while the (α-)segmental relaxation is not affected by the rate at which films are processed, the intensity of the slow Arrhenius process (SAP), a relaxation mechanism active both above and below the glass transition, can be used as a probe of the degree of mechanical stress experienced by the material.

4.
J Chem Phys ; 160(3)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38226828

RESUMO

The slow Arrhenius process (SAP) is a dielectric mode connected to thermally activated equilibration mechanisms, allowing for a fast reduction in free energy in liquids and glasses. The SAP, however, is still poorly understood, and so far, this process has mainly been investigated at temperatures above the glass transition. By employing a combination of methods to analyze dielectric measurements under both isochronal and isothermal conditions, we were able to quantitatively reproduce the dielectric response of the SAP of different polymers and to expand the experimental regime over which this process can be observed down to lower temperatures, up to 70 K below the glass transition. Employing thin films of thicknesses varying between 10 and 800 nm, we further verified that the peak shape and activation energy of the SAP of poly(4-bromostyrene) are not sensitive to temperature, nor do they vary upon confinement at the nanoscale level. These observations confirm the preliminary trends reported for other polymers. We find that one single set of parameters-meaning the activation barrier and the pre-exponential factor, respectively, linked to the enthalpic and entropic components of the process-can describe the dynamics of the SAP in both the supercooled liquid and glassy states, in bulk and thin films. These results are discussed in terms of possible molecular origins of the slow Arrhenius process in polymers.

5.
Phys Chem Chem Phys ; 26(2): 745-748, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38053485

RESUMO

Equilibration, the complex set of molecular rearrangements leading to more stable states, is usually dominated by density fluctuations, occurring through the structural (α-)relaxation, whose timescale quickly increases upon cooling. Growing evidence shows, however, that equilibration can be reached also through an alternative pathway provided by the Slow Arrhenius process (SAP), a molecular mode slower than the structural processes in the liquid state and faster in glass. The SAP, widely observed in polymers, has not yet been reported in small molecules, probably because of the larger experimental difficulties in handling these systems. Here, we report the presence of the SAP in three different molecular glassformers, by investigating these systems in the thin film geometry via dielectric spectroscopy. These results reinforce the idea that the SAP is a universal feature of liquid and glassy dynamics.

6.
J Chem Phys ; 159(16)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37888759

RESUMO

The Meyer-Neldel compensation law, observed in a wide variety of chemical reactions and other thermally activated processes, provides a proportionality between the entropic and the enthalpic components of an energy barrier. By analyzing 31 different polymer systems, we show that such an intriguing behavior is encountered also in the slow Arrhenius process, a recently discovered microscopic relaxation mode, responsible for several equilibration mechanisms both in the liquid and the glassy state. We interpret this behavior in terms of the multiexcitation entropy model, indicating that overcoming large energy barriers can require a high number of low-energy local excitations, providing a multiphonon relaxation process.

7.
ACS Macro Lett ; 12(3): 389-394, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36867860

RESUMO

Melting of crystals is an archetypical first order phase transition. Albeit extensive efforts, the molecular origin of this process in polymers is still not clear. Experiments are complicated by the tremendous change in mechanical properties and the occurrence of parasitic phenomena masking the genuine material response. Here, we present an experimental procedure permitting to circumvent these issues by investigating the dielectric response of thin polymer films. Extensive measurements on several commercially available semicrystalline polymers allowed us to identify a genuine molecular process associated with the newly formed liquid phase. In line with recent observations of amorphous polymer melts, we show this mechanism─known as the slow Arrhenius process (SAP)─involves time scales longer than those characteristics of segmental mobility and has the same energy barrier of the flow of the melt.

8.
Langmuir ; 39(9): 3471-3480, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36802636

RESUMO

We investigated the glassy dynamics of polystyrene (PS) confined in anodic aluminum oxide (AAO) nanopores by differential scanning calorimetry. Based on the outcome of our experiments, we show that the cooling rate applied to process the 2D confined PS melt has a significant impact on both the glass transition and the structural relaxation in the glassy state. A single glass transition temperature (Tg) is observed in quenched samples, while slow-cooled PS chains show two Tgs corresponding to a core-shell structure. The former phenomenon resembles what is observed in freestanding structures, while the latter is imputed to the adsorption of PS onto AAO walls. A more complex picture was drawn for physical aging. In the case of quenched samples, we observed a non-monotonic trend of the apparent aging rate that in 400 nm pores, reaches a value almost twice as larger than what is measured in bulk and decreases upon further confinement in smaller nanopores. For slow-cooled samples, by adequately varying the aging conditions, we were able to control the equilibration kinetics and either separate the two aging processes or induce an intermediate aging regime. We propose a possible explanation of these findings in terms of distribution in free volume and the presence of different aging mechanisms.

9.
ACS Macro Lett ; 11(1): 91-95, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35574787

RESUMO

Proximity to a nonrepulsive wall is commonly considered to cause slower dynamics, which should lead to greater relaxation times for capped thin polymer films than for bulk melts. To the contrary, here we demonstrate that Al-capped films of poly(2-chlorostyrene) exhibit enhanced dynamics with respect to the bulk, similar to analogous freestanding films. To quantitatively resolve the impact of interfaces on whole film dynamics, we analyzed the experimental data via the Cooperative Free Volume rate model. We found that the interfacial region adjacent to a cap contains an excess of free volume (relative to the bulk) about half of that proximate to a free surface. Employing a useful analogy between confinement and pressure effects, we estimated that the effect of capping an 18 nm freestanding film would be equivalent to applying a pressure increase of 19 MPa.


Assuntos
Polímeros , Pressão
10.
Sci Adv ; 8(15): eabm7154, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427165

RESUMO

The rate at which a nonequilibrium system decreases its free energy is commonly ascribed to molecular relaxation processes, arising from spontaneous rearrangements at the microscopic scale. While equilibration of liquids usually requires density fluctuations at time scales quickly diverging upon cooling, growing experimental evidence indicates the presence of a different, alternative pathway of weaker temperature dependence. Such equilibration processes exhibit a temperature-invariant activation energy, on the order of 100 kJ mol-1. Here, we identify the underlying molecular process responsible for this class of Arrhenius equilibration mechanisms with a slow mode (SAP), universally observed in the liquid dynamics of thin films. The SAP, which we show is intimately connected to high-temperature flow, can efficiently drive melts and glasses toward more stable, less energetic states. Our results show that measurements of liquid dynamics can be used to predict the equilibration rate in the glassy state.

11.
Int J Pharm ; 618: 121662, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35292399

RESUMO

In this work, two technologies were used to prepare long-acting implantable dosage forms in the treatment of schizophrenia. Hot-melt extrusion (HME) as well as fused deposition modelling (FDM) were used concomitantly to create personalized 3D printed implants. Different formulations were prepared using an amorphous PLA as matrix polymer and different solid-state plasticizers. Paliperidone palmitate (PP), a heat sensitive drug prescribed in the treatment of schizophrenia was chosen as model drug. After extrusion, different formulations were characterized using DSC and XRD. Then, an in vitro dissolution test was carried out to discriminate the formulation allowing a sustained drug release of PP. The formulation showing a sustained drug release of the drug was 3D printed as an implantable dosage form. By modulating the infill, the release profile was related to the proper design of tailored dosage form and not solely to the solubility of the drug. Indeed, different release profiles were achieved over 90 days using only one formulation. In addition, a stability test was performed on the 3D printed implants for 3 months. The results showed the stability of the amorphous state of PP, independently of the temperature as well as the integrity of the matrix and the drug.


Assuntos
Excipientes , Palmitato de Paliperidona , Liberação Controlada de Fármacos , Temperatura Alta , Impressão Tridimensional , Comprimidos , Tecnologia Farmacêutica/métodos
12.
J Phys Chem B ; 125(48): 13339-13347, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34808063

RESUMO

(R, S)-2-Chloromandelic acid, which can crystallize in racemic crystals (forms α and ß) or a conglomerate (form γ), has been studied for its glass-forming behavior. Below the glass transition temperature, samples of the title compound crack into pieces. Correlation plots of DSC results have been used to investigate what determines the cracking and its occurrence temperature. We found that the latter is influenced by the polymorph from which the melt state has been obtained, showing that a certain memory of the previous crystalline phase persists in the undercooled melt. Moreover, this residual structure could be eliminated by elongating the annealing period or increasing the annealing temperature. Investigation using broadband dielectric spectroscopy confirmed such a memory effect. Finally, we studied the role of cracking in the control of the crystallization. In contrast with previous literature on other glass-forming molecular systems, we verified that the crystallization upon reheating is not impacted by the occurrence of cracks in the glassy state. This observation challenges the current views on polymorphic crystallization from organic glasses.

13.
ACS Macro Lett ; 10(4): 476-480, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35549220

RESUMO

Confined in nanodomains, polymers crystallize much slower than in bulk due to both finite size and interfacial effects. These two factors are successfully disentangled in our phenomenological framework, which provides a measurement of the time scale of crystallization via a product of probabilities involving nucleation and of chain diffusion. In this Letter, we demonstrate that our model allows determining the Gibbs free energy of the formation of a critical size nucleus indicated by the classical nucleation theory for bulk polymer melts. In addition to that, by means of segmental mobility data and one single set of isothermal crystallization measurements at different confinement degrees, our model predicts the right temperature and thickness dependence of the crystallization time.

14.
ACS Macro Lett ; 10(5): 649-653, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35570757

RESUMO

We present an experimental study of the dynamics of a well-pronounced secondary relaxation observed in bulk and ultrathin films of the fluorinated copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP). In proximity to the glass transition, an anomalous phenomenon is observed: the ß-relaxation slows down upon heating. Measurements as a function of the film thickness show that this exceptional behavior gradually vanishes upon confinement at the nanoscale level. Regardless of sample size, the relaxation dynamics could be described in terms of the Minimal Model via an asymmetric double well potential. Supported by a structural investigation of surfaces and interfaces, our results reveal that the presence of adsorbing walls induces an increase in glass transition temperature, which counterbalances the asymmetry in the double well potential responsible for molecular motion.

15.
Nat Commun ; 11(1): 4354, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32859950

RESUMO

Tuning the thermodynamic state of a material has a tremendous impact on its performance. In the case of polymers placed in proximity of a solid wall, this is possible by annealing above the glass transition temperature, Tg, which induces the formation of an adsorbed layer. Whether heating to higher temperatures would result in desorption, thereby reverting the thermodynamic state of the interface, has so far remained elusive, due to the interference of degradation. Here, we employ fast scanning calorimetry, allowing to investigate the thermodynamics of the interface while heating at 104 K s-1. We show that applying such rate to adsorbed polymer layers permits avoiding degradation and, therefore, we provide clear-cut evidence of desorption of a polymer melt. We found that the enthalpy and temperature of desorption are independent of the annealing temperature, which, in analogy to crystallization/melting, indicates that adsorption/desorption is a first order thermodynamic transition.

16.
Soft Matter ; 16(23): 5348-5365, 2020 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32419002

RESUMO

For almost a decade, growing experimental evidence has revealed a strong correlation between the properties of nanoconfined polymers and the number of chains irreversibly adsorbed onto nonrepulsive interfaces, e.g. the supporting substrate of thin polymer coatings, or nanofillers dispersed in polymer melts. Based on such a correlation, it has already been possible to tailor structural and dynamics properties - such as the glass transition temperature, the crystallization rate, the thermal expansion coefficients, the viscosity and the wettability - of nanomaterials by controlling the adsorption kinetics. This evidence indicates that irreversible adsorption affects nanoconfinement effects. More recently, also the opposite phenomenon was experimentally observed: nanoconfinement alters interfacial interactions and, consequently, also the number of chains adsorbed in equilibrium conditions. In this review we discuss this intriguing interplay between irreversible adsorption and nanoconfinement effects in ultrathin polymer films. After introducing the methods currently used to prepare adsorbed layers and to measure the number of irreversibly adsorbed chains, we analyze the models employed to describe the kinetics of adsorption in polymer melts. We then discuss the structure of adsorbed polymer layers, focusing on the complex macromolecular architecture of interfacial chains and on their thermal expansion; we examine the way in which the structure of the adsorbed layer affects the thermal glass transition temperature, vitrification, and crystallization. By analyzing segmental dynamics of 1D confined systems, we describe experiments to track the changes in density during adsorption. We conclude this review with an analysis of the impact of nanoconfinement on adsorption, and a perspective on future work where we also address the key ideas of irreversibility, equilibration and long-range interactions.

17.
Phys Rev Lett ; 124(2): 027802, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-32004047

RESUMO

We show that the segmental mobility of thin films of poly(4-chlorostyrene) prepared under nonequilibrium conditions gets enhanced in the proximity of rough substrates. This trend is in contrast to existing treatments of roughness which conclude it is a source of slower dynamics, and to measurements of thin films of poly(2-vinylpiridine), whose dynamics is roughness invariant. Our experimental evidence indicates the faster interfacial dynamics originate from a reduction in interfacial density, due to the noncomplete filling of substrate asperities. Importantly, our results agree with the same scaling that describes the density dependence of bulk materials, correlating segmental mobility to a term exponential in the specific volume, and with empirical relations linking an increase in glass transition temperature to larger interfacial energy.

18.
19.
ACS Macro Lett ; 9(3): 318-322, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35648537

RESUMO

The translational diffusion of molecules dispersed into polymer matrices slows down tremendously when approaching a nonrepulsive interface. To unravel the origin of this phenomenon, we investigated the diffusion of molecular probes in the direction normal to an adsorbing wall. Using adsorbed polymer layers as matrices, we were able to decouple interfacial and finite size effects and determined the relation between the diffusion time and the area available at the polymer/solid interface. Based on the results of our investigation, we present a physical picture, suggesting that the reduction in diffusion rate is correlated to the degree of chain adsorption onto the substrate, that is, the density of surface obstacles encountered by tracer molecules.

20.
Eur Phys J E Soft Matter ; 42(8): 102, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31396728

RESUMO

We investigated the impact of sample preparation on the glassy dynamics of thin films of poly(4-chlorostyrene), a polymer whose molecular mobility is particularly sensitive to changes in the specific volume. Samples were obtained by spincoating, the technique most commonly used to prepare thin organic layers, which consists of pouring dilute polymer solutions onto a plate rotating at a high rate. Our experimental results demonstrate that filtering the solutions before spincoating affects the value of the segmental relaxation time of the as-prepared films. Thin polymer layers obtained via filtered solutions show accelerated segmental dynamics upon confinement at the nanoscale level, once below 100nm, while the samples obtained via unfiltered solutions exhibit bulk-like dynamics down to 15-20nm. We analyzed these results by means of the cooperative free volume rate model, considering a larger free volume content in thin films obtained via filtered solutions. The validity of the model predictions was finally verified by measurements of irreversible adsorption, confirming a larger adsorbed amount, corresponding to a higher specific volume, in the case of samples obtained via unfiltered solutions. Our results prove that filtering is a crucial step in the preparation of thin films, and it could be used to switch on and off nanoconfinement effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA