Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 32(28): e2002127, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32484288

RESUMO

Amorphous molecular solids are inherently disordered, exhibiting strong exciton localization. Optical microcavities containing such disordered excitonic materials have been theoretically shown to support both propagating and localized exciton-polariton modes. Here, the ultrastrong coupling of a Bloch surface wave photon and molecular excitons in a disordered organic thin film at room temperature is demonstrated, where the major fraction of the polaritons are propagating states. The delocalized exciton-polariton has a group velocity as high as 3 × 107 m s-1 and a lifetime of 500 fs, leading to propagation distances of over 100 µm from the excitation source. The polariton intensity shows a halo-like pattern that is due to self-interference of the polariton mode, from which a coherence length of 20 µm is derived and is correlated with phase breaking by polariton scattering. The demonstration of ultralong-range exciton-polariton transport at room temperature promises new photonic and optoelectronic applications such as efficient energy transfer in disordered condensed matter systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA