Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(30): 11134-11143, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467360

RESUMO

Satellite remote sensing is a promising method of monitoring emissions that may be missing in inventories, but the accuracy of these estimates is often not clear. We demonstrate here a comprehensive evaluation of errors in anthropogenic sulfur dioxide (SO2) emission estimates from NASA's OMI point source catalog for the contiguous US by comparing emissions from the catalog with high-quality emission inventory data over different dimensions including size of individual sources, aggregate vs individual source errors, and potential bias in individual source estimates over time. For sources that are included in the catalog, we find that errors in aggregate (sum of error for all included sources) are relatively low. Errors for individual sources in any given year can be substantial, however, with over- or underestimates in terms of total error ranging from -80 to 110 kt (roughly 10-90th percentile). We find that these errors are not necessarily random over time and that there can be consistently positive or negative biases for individual sources. We did not find any overall statistical relationship between the degree of isolation of a source and bias, either at a 40 or 70 km scales. For a sub-set of sources where inventory emissions over a radius of 70 km around an OMI detection are larger than twice the emissions within 40 km, the OMI value is consistently overestimated. We find, as expected, that emission sources not included in the catalog are the largest aggregate source of difference between the satellite estimates and inventories, especially in more recent years where source emission magnitudes have been decreasing and note that trends in satellite detections do not necessarily track trends in total emissions. We find that the OMI-based SO2 emissions are accurate in aggregate, when summed over a number of sources, but must be interpreted more cautiously at the individual source level. Similar analyses would be valuable for other satellite emission estimates; however, in many cases, the appropriate high-quality reference data may need to be generated.

2.
Nat Commun ; 12(1): 6245, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34716328

RESUMO

Stabilizing climate change well below 2 °C and towards 1.5 °C requires comprehensive mitigation of all greenhouse gases (GHG), including both CO2 and non-CO2 GHG emissions. Here we incorporate the latest global non-CO2 emissions and mitigation data into a state-of-the-art integrated assessment model GCAM and examine 90 mitigation scenarios pairing different levels of CO2 and non-CO2 GHG abatement pathways. We estimate that when non-CO2 mitigation contributions are not fully implemented, the timing of net-zero CO2 must occur about two decades earlier. Conversely, comprehensive GHG abatement that fully integrates non-CO2 mitigation measures in addition to a net-zero CO2 commitment can help achieve 1.5 °C stabilization. While decarbonization-driven fuel switching mainly reduces non-CO2 emissions from fuel extraction and end use, targeted non-CO2 mitigation measures can significantly reduce fluorinated gas emissions from industrial processes and cooling sectors. Our integrated modeling provides direct insights in how system-wide all GHG mitigation can affect the timing of net-zero CO2 for 1.5 °C and 2 °C climate change scenarios.

3.
PLoS One ; 16(2): e0246797, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33630871

RESUMO

Analysis with integrated assessment models (IAMs) and multisector dynamics models (MSDs) of global and national challenges and opportunities, including pursuit of Sustainable Development Goals (SDGs), requires projections of economic growth. In turn, the pursuit of multiple interacting goals affects economic productivity and growth, generating complex feedback loops among actions and objectives. Yet, most analysis uses either exogenous projections of productivity and growth or specifications endogenously enriched with a very small set of drivers. Extending endogenous treatment of productivity to represent two-way interactions with a significant set of goal-related variables can considerably enhance analysis. Among such variables incorporated in this project are aspects of human development (e.g., education, health, poverty reduction), socio-political change (e.g., governance capacity and quality), and infrastructure (e.g. water and sanitation and modern energy access), all in conditional interaction with underlying technological advance and economic convergence among countries. Using extensive datasets across countries and time, this project broadly endogenizes total factor productivity (TFP) within a large-scale, multi-issue IAM, the International Futures (IFs) model system. We demonstrate the utility of the resultant open system via comparison of new TFP projections with those produced for Shared Socioeconomic Pathways (SSP) scenarios, via integrated analysis of economic growth potential, and via multi-scenario analysis of progress toward the SDGs. We find that the integrated system can reproduce existing SSP projections, help anticipate differential economic progress across countries, and facilitate extended, integrated analysis of trade-offs and synergies in pursuit of the SDGs.


Assuntos
Desenvolvimento Econômico , Modelos Econômicos , Desenvolvimento Sustentável/economia , Humanos
4.
PLoS One ; 15(8): e0237918, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32857784

RESUMO

Agricultural crop yields are susceptible to changes in future temperature, precipitation, and other Earth system factors. Future changes to these physical Earth system attributes and their effects on agricultural crop yields are highly uncertain. United States agricultural producers will be affected by such changes whether they occur domestically or internationally through international commodity markets. Here we present a replication study of previous investigations (with different models) showing that potential direct domestic climate effects on crop yields in the U.S. have financial consequences for U.S. producers on the same order of magnitude but opposite in sign to indirect financial impacts on U.S. producers from climate effects on crop yields elsewhere in the world. We conclude that the analysis of country-specific financial climate impacts cannot ignore indirect effects arising through international markets. We find our results to be robust across a wide range of potential future crop yield impacts analyzed in the multi-sector dynamic global model GCAM.


Assuntos
Agricultura , Clima , Internacionalidade , Modelos Teóricos , Produtos Agrícolas/crescimento & desenvolvimento , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA