Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(8): 5382-5396, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38992948

RESUMO

The programmed fabrication of oral dosage forms is associated with several challenges such as controlled loading and disintegration. To optimize the drug payload, excipient breakdown, and site-specific sustained release of hydrophobic drug (sulfamethoxazole, SM), we propose the development of acrylate polymer tablets enclosed with drug-loaded polycaprolactone (PCL) films. The active pharmaceutical ingredient (API) is physisorbed into the porous iron (Fe)-based metal-organic framework (MOF) and later converted to tangible PCL films, which, upon folding, are incorporated into the acrylate polymer matrices (P1/P2/P3). X-ray powder diffraction (XRPD) analysis and scanning electron microscopy (SEM) micrographs confirmed the stability and homogeneous distribution of MOF within the 50 µm thick film. Adsorption-desorption measurements at ambient temperatures confirmed the decrease in the BET surface area of PCL films by 40%, which was ∼3.01 m/g, and pore volume from 30 to 9 nm. The decrease in adsorption and surface parameters could confirm the gradual accessibility of SM molecules once exposed to a degrading environment. Fourier transform infrared (FTIR) analyses of in vitro dissolution confirmed the presence of the drug in the MOF-PCL film-enclosed tablets and concluded the cumulative SM release at pH ∼ 8.2 which followed the order SM@Fe-MOF < P1/P2/P3 < PCL-SM@Fe-MOF < P1/PCL-SM@Fe-MOF < P3/PCL-SM@Fe-MOF. The results of the study indicate that the P3/PCL-SM@Fe-MOF assembly has potential use as a biomedical drug delivery alternative carrier for effective drug loading and stimuli-responsive flexible release to attain high bioavailability.


Assuntos
Materiais Biocompatíveis , Preparações de Ação Retardada , Teste de Materiais , Estruturas Metalorgânicas , Tamanho da Partícula , Poliésteres , Estruturas Metalorgânicas/química , Poliésteres/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Preparações de Ação Retardada/química , Liberação Controlada de Fármacos , Propriedades de Superfície , Portadores de Fármacos/química , Polímeros/química
2.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610380

RESUMO

Environmental monitoring and the detection of antibiotic contaminants require expensive and time-consuming techniques. To overcome these challenges, gold nanoparticle-mediated fluorometric "turn-on" detection of Polymyxin B (PMB) in an aqueous medium was undertaken. The molecular weight of polyethyleneimine (PEI)-dependent physicochemical tuning of gold nanoparticles (PEI@AuNPs) was achieved and employed for the same. The three variable molecular weights of branched polyethyleneimine (MW 750, 60, and 1.3 kDa) molecules controlled the nano-geometry of the gold nanoparticles along with enhanced stabilization at room temperature. The synthesized gold nanoparticles were characterized through various advanced techniques. The results revealed that polyethyleneimine-stabilized gold nanoparticles (PEI@AuNP-1-3) were 4.5, 7.0, and 52.5 nm in size with spherical shapes, and the zeta potential values were 29.9, 22.5, and 16.6 mV, respectively. Accordingly, the PEI@AuNPs probes demonstrated high sensitivity and selectivity, with a linear relationship curve over a concentration range of 1-6 µM for polymyxin B. The limit of detection (LOD) was calculated as 8.5 nM. This is the first unique report of gold nanoparticle nano-geometry-dependent FRET-based turn-on detection of PMB in an aqueous medium. We believe that this approach would offer a complementary strategy for the development of a highly sophisticated and advanced sensing system for PMB and act as a template for the development of new nanomaterial-based engineered sensors for rapid antibiotic detection in environmental as well as biological samples.


Assuntos
Nanopartículas Metálicas , Polimixina B , Ouro , Peso Molecular , Polietilenoimina , Transferência Ressonante de Energia de Fluorescência , Antibacterianos
3.
Biosensors (Basel) ; 14(1)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38248426

RESUMO

Glutathione (GSH) and nickel (II) cation have an indispensable role in various physiological processes, including preventing the oxidative damage of cells and acting as a cofactor for lipid metabolic enzymes. An imbalance in the physiological level of these species may cause serious health complications. Therefore, sensitive and selective fluorescent probes for the detection of GSH and nickel (II) are of great interest for clinical as well as environmental monitoring. Herein, vancomycin-conjugated gold nanoparticles (PEI-AuNP@Van) were prepared and employed for the detection of GSH and nickel (II) based on a turn-on-off mechanism. The as-synthesized PEI-AuNP@Van was ~7.5 nm in size; it exhibited a spherical shape with face-centered cubic lattice symmetry. As compared to vancomycin unconjugated gold nanoparticles, GSH led to the turn-on state of PEI-AuNP@Van, while Ni2+ acted as a fluorescence quencher (turn-off) without the aggregation of nanoparticles. These phenomena strongly justify the active role of vancomycin conjugation for the detection of GSH and Ni2+. The turn-on-off kinetics was linearly proportional over the concentration range between 0.05-0.8 µM and 0.05-6.4 µM. The detection limits were 205.9 and 90.5 nM for GSH and Ni2+, respectively; these results are excellent in comparison to previous reports. This study demonstrates the active role of vancomycin conjugation for sensing of GSH and Ni2+ along with PEI-AuNP@Van as a promising nanoprobe.


Assuntos
Nanopartículas Metálicas , Níquel , Ouro , Vancomicina , Glutationa
4.
Appl Phys Rev ; 10: 041310, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38229764

RESUMO

Nitric oxide (NO) signaling plays many pivotal roles impacting almost every organ function in mammalian physiology, most notably in cardiovascular homeostasis, inflammation, and neurological regulation. Consequently, the ability to make real-time and continuous measurements of NO is a prerequisite research tool to understand fundamental biology in health and disease. Despite considerable success in the electrochemical sensing of NO, challenges remain to optimize rapid and highly sensitive detection, without interference from other species, in both cultured cells and in vivo. Achieving these goals depends on the choice of electrode material and the electrode surface modification, with graphene nanostructures recently reported to enhance the electrocatalytic detection of NO. Due to its single-atom thickness, high specific surface area, and highest electron mobility, graphene holds promise for electrochemical sensing of NO with unprecedented sensitivity and specificity even at sub-nanomolar concentrations. The non-covalent functionalization of graphene through supermolecular interactions, including π-π stacking and electrostatic interaction, facilitates the successful immobilization of other high electrolytic materials and heme biomolecules on graphene while maintaining the structural integrity and morphology of graphene sheets. Such nanocomposites have been optimized for the highly sensitive and specific detection of NO under physiologically relevant conditions. In this review, we examine the building blocks of these graphene-based electrochemical sensors, including the conjugation of different electrolytic materials and biomolecules on graphene, and sensing mechanisms, by reflecting on the recent developments in materials and engineering for real-time detection of NO in biological systems.

5.
Biophys Rev (Melville) ; 1(1): 011301, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38505627

RESUMO

One of the most common types of 3D printing technologies is inkjet printing due to its numerous advantages, including low cost, programmability, high resolution, throughput, and speed. Inkjet printers are also capable of fabricating artificial tissues with physiological characteristics similar to those of living tissues. These artificial tissues are used for disease modeling, drug discovery, drug screening, and replacements for diseased or damaged tissues. This paper reviews recent advancements in one of the most common 3D printing technologies, inkjet dispensing. We briefly consider common printing techniques, including fused deposition modeling (FDM), stereolithography (STL), and inkjet printing. We briefly discuss various steps in inkjet printing, including droplet generation, droplet ejection, interaction of droplets on substrates, drying, and solidification. We also discuss various parameters that affect the printing process, including ink properties (e.g., viscosity and surface tension), physical parameters (e.g., internal diameter of printheads), and actuation mechanisms (e.g., piezoelectric actuation and thermal actuation). Through better understanding of common 3D printing technologies and the parameters that influence the printing processes, new types of artificial tissues, disease models, and structures for drug discovery and drug screening may be prepared. This review considers future directions in inkjet printing research that are focused on enhancing the resolution, printability, and uniformity of printed structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA