Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(18): 6643-6660, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38725490

RESUMO

Electrode-electrolyte interfaces play a decisive role in electrochemical charge accumulation and transfer processes. Theoretical modelling of these interfaces is critical to decipher the microscopic details of such phenomena. Different force field-based molecular dynamics protocols are compared here in a view to connect calculated and experimental charge density-potential relationships. Platinum-aqueous electrolyte interfaces are taken as a model. The potential of using experimental charge density-potential curves to transform cell voltage into electrode potential in force-field molecular dynamics simulations, and the need for that purpose of developing simulation protocols that can accurately calculate the double-layer capacitance, are discussed.

3.
ACS Appl Mater Interfaces ; 16(7): 8627-8638, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38345507

RESUMO

Chemical stability of hexagonal boron nitride (hBN) ultrathin layers in harsh electrolytes and the availability of nitrogen site in hBN to stabilize metals like Pt are used here to develop a high intrinsic activity hydrogen evolution reaction (HER) catalyst having low loaded Pt (5 weight% or <1 atomic%). A catalyst having a nonzero oxidation state for Pt (with a Pt-N bonding) is shown to be HER active even with low catalyst loadings (0.114 mgcm-2). Electronic modification of the shear exfoliated hBN sheets is achieved by Au nanoparticle-based surface decoration (hBN_Au), and further anchoring with Pt develops a catalyst (hBN_Au_Pt) with high turnover frequency for HER (∼15). The hBN_Au_Pt is shown to be a highly durable catalyst even after the accelerated durability test for 10000 cycles and temperature annealing at 100 °C. Density functional theory based calculations gave insights in to the electronic modifications of hBN with Au and the catalytic activity of the hBN_Au_Pt system, in line with the experimental studies, indicating the demonstration of a new class of catalyst system devoid of issues such as carbon corrosion and Pt leaching.

4.
Small ; : e2308344, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085138

RESUMO

Owing to their great promise of high energy density, the development of safer lithium metal batteries (LMBs) has become the necessity of the hour. Herein, a scalable method based on conventional Celgard membrane (CM) separator modification is adopted to develop high-rate (10 mA cm-2 ) dendrite-free LMBs of extended cyclability (>1000 hours, >1500 cycles with 3 mA cm-2 , the bare fails within 50 cycles) with low over potential losses. The CM modification method entails the deposition of thin coatings of (≈6.6 µm) graphitic fluorocarbon (FG) via a large area electrophoretic deposition, where it helps for the formation of a stable LiF and carbon rich solid electrolyte interface (SEI) aiding a uniform lithium deposition even in higher fluxes. The FG@CM delivers a high transport number for Li ion (0.74) in comparison to the bare CM (0.31), indicating a facile Li ion transport through the membrane. A mechanistic insight into the role of artificial SEI formation with such membrane modification is provided here with a series of electrochemical as well as spectroscopic in situ/ex situ and postmortem analyses. The simplicity and scalability of the technique make this approach unique among other reported ones towards the advancement of safer LMBs of high energy and power density.

5.
Langmuir ; 39(49): 17581-17592, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38044584

RESUMO

We present our perspective on the role of osmolytes in mitigating abiotic stresses such as hypersalinity and sudden temperature changes. While the stabilizing effect of osmolytes on protein tertiary structures has been extensively studied, their direct impact on abiotic stress factors has eluded mainstream attention. Via highlighting a set of recent success stories of a joint venture of computer simulations and experimental measurements, we summarize the mechanistic insights into osmolytic action, particularly in the context of salt stress and combined cold-salt stress at the interface of biomolecular surfaces and saline environments. We stress the importance of chemical specificity in osmolytic activity, the interplay of differential osmolytic behaviors against heterogeneous salt stress, and the capability of osmolytes to adopt combined actions. Additionally, we discuss the potential of incorporating nanomaterial-based systems to enrich our understanding of osmolyte bioactions and facilitate their practical applications. We anticipate that this discourse will inspire interdisciplinary collaborations and motivate further investigations on osmolytes, ultimately broadening their applications in the fields of health and disease.


Assuntos
Resposta ao Choque Frio , Proteínas , Proteínas/química , Temperatura Baixa
6.
J Phys Condens Matter ; 35(50)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37708898

RESUMO

Monolayers of MoS2with tunable bandgap and valley positions are highly demanding for their applications in opto-spintronics. Herein, selenium (Se) and vanadium (V) co-doped MoS2monolayers (vanadium doped MoS2(1-x)Se2x(V-MoSSe)) are developed and showed their variations in the electronic and optical properties with dopant content. Vanadium gets substitutionally (in place of Mo) doped within the MoS2lattice while selenium doped in place of sulfur, as shown by a detailed microstructure and spectroscopy analyses. The bandgap tunability with selenium doping can be achieved while valley shift is occurred due to the doping of vanadium. Chemical vapor deposition assisted grown MoS2(also selenium doped MoS2as shown here) is known for its n-type transport behavior while vanadium doping is found to be changing its nature to p-doping. Chirality dependent photoexcitation studies indicate a room temperature valley splitting in V-MoSSe (∼8 meV), where such a valley splitting is verified using density functional theory based calculations.

7.
PNAS Nexus ; 2(9): pgad277, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37680690

RESUMO

Enormous enhancement in the viscosity of a liquid near its glass transition is a hallmark of glass transition. Within a class of theoretical frameworks, it is connected to growing many-body static correlations near the transition, often called "amorphous ordering." At the same time, some theories do not invoke the existence of such a static length scale in the problem. Thus, proving the existence and possible estimation of the static length scales of amorphous order in different glass-forming liquids is very important to validate or falsify the predictions of these theories and unravel the true physics of glass formation. Experiments on molecular glass-forming liquids become pivotal in this scenario as the viscosity grows several folds (∼1014), and simulations or colloidal glass experiments fail to access these required long-time scales. Here we design an experiment to extract the static length scales in molecular liquids using dilute amounts of another large molecule as a pinning site. Results from dielectric relaxation experiments on supercooled Glycerol with different pinning concentrations of Sorbitol and Glucose, as well as the simulations on a few model glass-forming liquids with pinning sites, indicate the versatility of the proposed method, opening possible new avenues to study the physics of glass transition in other molecular liquids.

8.
ACS Biomater Sci Eng ; 9(10): 5639-5652, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37697623

RESUMO

Cryoprotecting agent (CPA)-guided preservation is essential for effective protection of cells from cryoinjuries. However, current cryoprotecting technologies practiced to cryopreserve cells for biomedical applications are met with extreme challenges due to the associated toxicity of CPAs. Because of these limitations of present CPAs, the quest for nontoxic alternatives for useful application in cell-based biomedicines has been attracting growing interest. Toward this end, here, we investigate naturally occurring osmolytes' scope as biocompatible cryoprotectants under cold stress conditions in high-saline medium. Via a combination of the simulation and experiment on charged silica nanostructures, we render first-hand evidence that a pair of archetypal osmolytes, glycine and betaine, would act as a cryoprotectant by restoring the indigenous intersurface electrostatic interaction, which had been a priori screened due to the cold effect under salt stress. While these osmolytes' individual modes of action are sensitive to subtle chemical variation, a uniform augmentation in the extent of osmolytic activity is observed with an increase in temperature to counter the proportionately enhanced salt screening. The trend as noted in inorganic nanostructures is found to be recurrent and robustly transferable in a charged protein interface. In hindsight, our observation justifies the sufficiency of the reduced requirement of osmolytes in cells during critical cold conditions and encourages their direct usage and biomimicry for cryopreservation.

9.
Small ; 19(38): e2303319, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37194967

RESUMO

Photo-rechargeable (solar) battery can be considered as an energy harvesting cum storage system, where it can charge the conventional metal-ion battery using light instead of electricity, without having other parasitic reactions. Here a two-electrode lithium-ion solar battery with multifaceted TiS2 -TiO2 hybrid sheets as cathode. The choice of TiS2 -TiO2 electrode ensures the formation of a type II semiconductor heterostructure while the lateral heterostructure geometry ensures high mass/charge transfer and light interactions with the electrode. TiS2 has a higher lithium binding energy (1.6 eV) than TiO2 (1.03 eV), ensuring the possibilities of higher amount of Li-ion insertion to TiS2 and hence the maximum recovery with the photocharging, as further confirmed by the experiments. Apart from the demonstration of solar solid-state batteries, the charging of lithium-ion full cell with light indicates the formation of lithium intercalated graphite compounds, ensuring the charging of the battery without any other parasitic reactions at the electrolyte or electrode-electrolyte interfaces. Possible mechanisms proposed here for the charging and discharging processes of solar batteries, based on the experimental and theoretical results, indicate the potential of such systems in the forthcoming era of renewable energies.

10.
ACS Omega ; 8(4): 4344-4356, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36743051

RESUMO

Two-dimensional-zero-dimensional plasmonic hybrids involving defective graphene and transition metals (DGR-TM) have drawn significant interest due to their near-field plasmonic effects in the wide range of the UV-vis-NIR spectrum. In the present work, we carried out extensive investigations on resonance Raman spectroscopy (RRS) and localized surface plasmon resonance (LSPR) from the various DGR-TM hybrids (Au, Ag, and Cu) using micro-Raman, spatial Raman mapping analysis, high-resolution transmission electron microscopy (HRTEM), and LSPR absorption measurements on defective CVD graphene layers. Further, electric field (E) mappings of samples were calculated using the finite domain time difference (FDTD) method to support the experimental findings. The spatial distribution of various in-plane and edge defects and defect-mediated interaction of plasmonic nanoparticles (NPs) with graphene were investigated on the basis of the RRS and LSPR and correlated with the quantitative analysis from HRTEM, excitation wavelength-dependent micro-Raman, and E-field enhancement features of defective graphene and defective graphene-Au hybrids before and after rapid thermal annealing (RTA). Excitation wavelength-dependent surface-enhanced Raman scattering (SERS) and LSPR-induced broadband absorption from DGR-Au plasmonic hybrids reveal the electron and phonon interaction on the graphene surface, which leads to the charge transfer from TM NPs to graphene. This is believed to be responsible for the reduction in the SERS signal, which was observed from the wavelength-dependent Raman spectroscopy/mappings. We implemented defective graphene and DGR-Au plasmonic hybrids as efficient SERS sensors to detect the Fluorescein and Rhodamine 6G molecules with a detection limit down to 10-9 M. Defective graphene and Au plasmonic hybrids showed an impressive Raman enhancement in the order of 108, which is significant for its practical application.

11.
J Phys Chem Lett ; 14(2): 437-444, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36622789

RESUMO

Nonaqueous rechargeable Li-O2 batteries are recognized as possible alternatives to the currently established Li-ion battery technology for next-generation traction by virtue of their high specific energy. However, the technology is still far from commercial realization mainly due to the performance-limiting reactions at the cathode. The insulating discharge product, Li2O2, can passivate the cathode leading to issues such as low specific capacity and early cell death. Herein, the -OH functionalities at the cathode, incorporated by polysaccharide addition, are shown to enhance the discharge capacity and cyclability. The -OH functional group (high pKa) at the cathode helps to stabilize the intermediate, LiO2, via an energetically favorable pathway and delays the precipitation to Li2O2, without any parasitic reaction, unlike the other reported low pKa additives. The role of the functionalities is studied using various experimental techniques and first principles density functional theory based studies. This approach provides a rational design route for the cathodes that provide high capacities for the emergent Li-O2 batteries.

12.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677596

RESUMO

Metal phosphorus trichalcogenide (MPX3) materials have aroused substantial curiosity in the evolution of electrochemical storage devices due to their environment-friendliness and advantageous X-P synergic effects. The interesting intercalation properties generated due to the presence of wide van der Waals gaps along with high theoretical specific capacity pose MPX3 as a potential host electrode in lithium batteries. Herein, we synthesized two-dimensional iron thio-phosphate (FePS3) nanoflakes via a salt-template synthesis method, using low-temperature time synthesis conditions in single step. The electrochemical application of FePS3 has been explored through the construction of a high-capacity lithium primary battery (LPB) coin cell with FePS3 nanoflakes as the cathode. The galvanostatic discharge studies on the assembled LPB exhibit a high specific capacity of ~1791 mAh g-1 and high energy density of ~2500 Wh Kg-1 along with a power density of ~5226 W Kg-1, some of the highest reported values, indicating FePS3's potential in low-cost primary batteries. A mechanistic insight into the observed three-staged discharge mechanism of the FePS3-based primary cell resulting in the high capacity is provided, and the findings are supported via post-mortem analyses at the electrode scale, using both electrochemical- as well as photoelectron spectroscopy-based studies.

13.
iScience ; 25(8): 104835, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35992077

RESUMO

Herein, with the help of experimental and first-principles density functional theory (DFT)-based studies, we have shown that structural changes in the water coordination in electrolytes having high alkalinity can be a possible reason for the reduced catalytic activity of platinum (Pt) in high pH. Studies with polycrystalline Pt electrodes indicate that electrocatalytic HER activity reduces in terms of high overpotential required, high Tafel slope, and high charge transfer resistances in concentrated aqueous alkaline electrolytes (say 6 M KOH) in comparison to that in low alkaline electrolytes (say 0.1 M KOH), irrespective of the counter cations (Na+, K+, or Rb+) present. The changes in the water structure of bulk electrolytes as well as that in electrode-electrolyte interface are studied. The results are compared with DFT-based analysis, and the study can pave new directions in studying the HER process in terms of the water structure near the electrode-electrolyte interface.

14.
J Phys Chem Lett ; 13(24): 5660-5668, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35709362

RESUMO

To counter the stress of a salt imbalance, the cell often produces low molecular weight osmolytes to resuscitate homeostasis. However, how zwitterionic osmolytes would tune the electrostatic interactions among charged biomacromolecular surfaces under salt stress has eluded mainstream investigations. Here, via combination of molecular simulation and experiment, we demonstrate that a set of zwitterionic osmolytes is able to restore the electrostatic interaction between two negatively charged surfaces that had been masked in the presence of salt. Interestingly, the mechanisms of resurrecting charge interaction under excess salt are revealed to be mutually divergent and osmolyte specific. In particular, glycine is found to competitively desorb the salt ions from the surface via its direct interaction with the surface. On the contrary, TMAO and betaine counteract salt stress by retaining adsorbed cations but partially neutralizing their charge density via ion-mediated interaction. These access to alternative modes of osmolytic actions would provide the cell the required flexibility in combating salt stress.


Assuntos
Betaína , Glicina , Íons , Estresse Salino , Eletricidade Estática
15.
Angew Chem Int Ed Engl ; 61(28): e202202637, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35362643

RESUMO

Herein we report secondary pyrrolidin-2-ols as a source of cyclic (alkyl)(amino)carbenes (CAAC) for the synthesis of CAAC-CuI -complexes and cyclic thiones when reacted with CuI -salts and elemental sulfur, respectively, under reductive elimination of water from the carbon(IV)-center. This result demonstrates a convenient and facile access to CAAC-based CuI -salts, which are well known catalysts for different organic transformations. It further establishes secondary alcohols to be a viable source of carbenes-realizing after 185 years Dumas' dream who tried to prepare the parent carbene (CH2 ) by 1,1-dehydration of methanol. Addressed is also the reactivity of water towards CAACs, which proceeds through an oxidative addition of the O-H bond to the carbon(II)-center. This emphasizes the ability of carbon-compounds to mimic the reactivity of transition-metal complexes: reversible oxidative addition and reductive elimination of the O-H bond to/from the C(II)/C(IV)-centre.

16.
Small ; 17(51): e2105029, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34786850

RESUMO

New ways of directly using solar energy to charge electrochemical energy storage devices such as batteries would lead to exciting developments in energy technologies. Here, a two-electrode photo rechargeable Li-ion battery is demonstrated using nanorod of type II semiconductor heterostructures with in-plane domains of crystalline MoS2 and amorphous MoOx . The staggered energy band alignment of MoS2 and MoOx limits the electron holes recombination and causes holes to be retained in the Li intercalated MoS2 electrode. The holes generated in the MoS2 pushes the intercalated Li-ions and hence charge the battery. Low band gap, high efficiency photo-conversion and efficient electron-hole separation help the battery to fully charge within a few hours using solar light. The proposed concept and materials can enable next generation stable photo-rechargeable battery electrodes, in contrast to the reported materials.

17.
Dalton Trans ; 50(40): 14257-14263, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34553710

RESUMO

Rational design of a catalyst using earth abundant transition metals that can facilitate the smooth O-O bond formation is crucial for developing efficient water oxidation catalysts. The coordination environment around the metal ion of the catalyst plays a pivotal role in this context. We have chosen dinuclear mixed-valence CoIIICoII complexes of the general formula of [CoIIICoII(LH2)2(X)(H2O)] (X = OAc or Cl) which bear a coordinated water molecule in the primary coordination sphere. We anticipated that the water molecule in the primary sphere can take part in the proton coupled electron transfer (PCET) mechanism which can accelerate the facile formation of the O-O bond under strong alkaline conditions (1 M NaOH). To understand the role of the coordinated water molecule we have generated an analogous complex, [CoIIICoII(LH2)2(o-vanillin)] (o-vanillin = 2-hydroxy-3-methoxybenzaldehyde), without coordinated water. Interestingly, we have found that the water coordinated complexes show better oxygen evolution reaction (OER) activity and stability.

18.
Dalton Trans ; 50(40): 14062-14080, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34549221

RESUMO

Quantum dots (QDs), owing to their single atom-like electronic structure due to quantum confinement, are often referred to as artificial atoms. This unique physical property results in the diverse functions exhibited by QDs. A wide array of applications have been achieved by the surface functionalization of QDs, resulting in exceptional optical, antimicrobial, catalytic, cytotoxic and enzyme inhibition properties. Ordinarily, traditionally prepared QDs are subjected to post synthesis functionalization via a variety of methods, such as ligand exchange or covalent and non-covalent conjugation. Nevertheless, solvent toxicity, combined with the high temperature and pressure conditions during the preparation of QDs and the low product yield due to multiple steps in the functionalization, limit their overall use. This has driven scientists to investigate the development of greener, environmental friendly and cost-effective methods that can circumvent the complexity and strenuousness associated with traditional processes of bio-functionalization. In this review, a detailed analysis of the methods to bio-prepare pre-functionalized QDs, with elucidated mechanisms, and their application in the areas of catalysis and biomedical applications has been conducted. The environmental and health and safety aspects of the bio-derived QDs have been briefly discussed to unveil the future of nano-commercialization.


Assuntos
Pesquisa Biomédica , Pontos Quânticos/química , Catálise
19.
ACS Appl Mater Interfaces ; 13(28): 33112-33122, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34247478

RESUMO

Tweaking the electrolyte of the anode compartment of zinc-air battery (ZAB) system is shown to be extending the charge-discharge cyclability of the cell. An alkaline zinc (Zn)-air cell working for ∼32 h (192 cycles) without failure is extended to >55 h (>330 cycles) by modifying the anode compartment with a mixture electrolyte of KOH and LiOH. The cell containing the mixture electrolyte has a low overpotential for charging along with high discharge capacity. The role of Li+ ions in tuning the electrode morphology and electrodics is studied both theoretically and experimentally. The synergistic effect of Li+ and K+ ions in the electrolyte on improved ZAB performance is proven. This study can pave new ways for the commercial implementation of ZAB, where it has already proven its potential in low-cost, high energy density, and mobility applications.

20.
Oxf Open Mater Sci ; 1(1): itab003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38626262

RESUMO

Respiratory masks having similar standards of 'N95', defined by the US National Institute for Occupational Safety and Health, will be highly sought after, post the current COVID-19 pandemic. Here, such a low-cost (∼$1/mask) mask design having electrostatic rechargeability and filtration efficiency of >95% with a quality factor of ∼20 kPa-1 is demonstrated. This filtration efficacy is for particles of size 300 nm. The tri-layer mask, named PPDFGO tri, contains nylon, modified polypropylene (PPY), and cotton nonwoven fabrics as three layers. The melt-spun PPY, available in a conventional N95 mask, modified with graphene oxide and polyvinylidene fluoride mixture containing paste using a simple solution casting method acts as active filtration layer. The efficacy of this tri-layer system toward triboelectric rechargeability using small mechanical agitations is demonstrated here. These triboelectric nanogenerator (TENG)-assisted membranes have high electrostatic charge retention capacity (∼1 nC/cm2 after 5 days in ambient condition) and high rechargeability even in very humid conditions (>80% RH). A simple but robust permeability measurement set up is also constructed to test these TENG-based membranes, where a flow rate of 30-35 L/min is maintained during the testing. Such a simple modification to the existing mask designs enabling their rechargeability via external mechanical disturbances, with enhanced usability for single use as well as for reuse with decontantamination, will be highly beneficial in the realm of indispensable personal protective equipment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA