Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(16): 18687, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38680303

RESUMO

[This corrects the article DOI: 10.1021/acsomega.3c02630.].

2.
ACS Omega ; 8(41): 37830-37841, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867662

RESUMO

Continued dependence on crude oil and natural gas resources for fossil fuels has caused global atmospheric carbon dioxide (CO2) emissions to increase to record-setting proportions. There is an urgent need for efficient and inexpensive carbon sequestration systems to mitigate large-scale emissions of CO2 from industrial flue gas. Carbonic anhydrase (CA) has shown high potential for enhanced CO2 capture applications compared to conventional absorption-based methods currently utilized in various industrial settings. This study aims to understand structural aspects that contribute to the stability of CA enzymes critical for their applications in industrial processes, which require the ability to withstand conditions different from those in their native environments. Here, we evaluated the thermostability and enzyme activity of mesophilic and thermophilic CA variants at different temperature conditions and in the presence of atmospheric gas pollutants like nitrogen oxides and sulfur oxides. Based on our enzyme activity assays and molecular dynamics simulations, we see increased conformational stability and CA activity levels in thermostable CA variants incubated week-long at different temperature conditions. The thermostable CA variants also retained high levels of CA activity despite changes in solution pH due to increasing NO and SO2 concentrations. A loss of CA activity was observed only at high concentrations of NO/SO2 that possibly can be minimized with the appropriate buffered solutions.

3.
Mol Cancer Res ; 18(3): 424-435, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31685642

RESUMO

Homologous recombination (HR) is a highly conserved pathway that can facilitate the repair of DNA double-strand breaks (DSB). Several Deubiquitinases (DUB) have been implicated as key players in DNA damage repair (DDR) through HR. Here, we report USP22, a DUB that is highly overexpressed in multiple cancer types, is necessary for HR through a direct interaction with PALB2 through its C-terminal WD40 domain. This interaction stimulates USP22 catalytic activity in vitro. Furthermore, we show USP22 is necessary for BRCA2, PALB2, and Rad51 recruitment to DSBs and this is, in part, through USP22 stabilizing BRCA2 and PALB2 levels. Taken together, our results describe a role for USP22 in DNA repair. IMPLICATIONS: This research provides new and exciting mechanistic insights into how USP22 overexpression promotes chemoresistance in lung cancer. We believe this study, and others, will help aid in developing targeted drugs toward USP22 and known binding partners for lung cancer treatment.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteína do Grupo de Complementação N da Anemia de Fanconi/metabolismo , Recombinação Homóloga , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ubiquitina Tiolesterase/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/genética , Transfecção
4.
Int J Cancer ; 143(10): 2470-2478, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30006924

RESUMO

In the last decade, it has become clear that epigenetic changes act together with genetic mutations to promote virtually every stage of tumorigenesis and cancer progression. This knowledge has triggered searches for "epigenetic drugs" that can be developed into new cancer therapies. Here we report that triptolide reduced lung cancer incidence from 70% to 10% in a Fen1 E160D transgenic mouse model and effectively inhibited cancer growth and metastasis in A549 and H460 mouse xenografts. We found that triptolide induced lung cancer cell apoptosis that was associated with global epigenetic changes to histone 3 (H3). These global epigenetic changes in H3 are correlated with an increase in protein expression of five Wnt inhibitory factors that include WIF1, FRZB, SFRP1, ENY2, and DKK1. Triptolide had no effect on DNA methylation status at any of the CpG islands located in the promoter regions of all five Wnt inhibitory factors. Wnt expression is implicated in promoting the development and progression of many lung cancers. Because of this, the potential to target Wnt signaling with drugs that induce epigenetic modifications provides a new avenue for developing novel therapies for patients with these tumor types.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Diterpenos/farmacologia , Histonas/genética , Neoplasias Pulmonares/tratamento farmacológico , Fenantrenos/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Células A549 , Animais , Antineoplásicos Alquilantes/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Epigênese Genética , Compostos de Epóxi/farmacologia , Histonas/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Mol Cancer Res ; 16(7): 1161-1171, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29720480

RESUMO

Loss of monoubiquitination of histone H2B (H2Bub1) was found to be associated with poor-differentiation and enhanced malignancy of lung adenocarcinoma. This study investigated the association and impact of the ubiquitin-specific peptidase 22 (USP22), an H2Bub1 deubiquitinase, on stem cell-like characteristics and cisplatin resistance in cancer-initiating cells (CIC) from primary lung adenocarcinoma. CICs were isolated, enriched, and characterized from patient-derived cancer tissues using both in vitro tumorsphere formation and in vivo xenograft assays. USP22 was determined to be predominantly expressed in CICs, a subpopulation of cells with high expression of the stem cell biomarkers, CD133 and CD44. The expression of USP22 in CICs is markedly reduced upon FBS/retinoic acid-induced differentiation. Moreover, knockdown of USP22 significantly suppressed tumorsphere formation and xenograft growth in NOD-SCID gamma (NSG) mice. Notably, USP22 and aldehyde dehydrogenase (ALDH) activity were elevated in tumorsphere cells that survived cisplatin treatment, whereas knockdown of USP22 significantly sensitizes tumorsphere cells to cisplatin. Interestingly, ALDH1A3, a predominant ALDH isozyme implicated in enhancing cisplatin resistance in lung adenocarcinoma, is significantly downregulated upon knockdown of USP22 in tumorsphere cells. Furthermore, knockdown of ALDH1A3 significantly sensitizes tumorsphere cells to cisplatin. Combined, these data demonstrate that USP22, predominantly expressed in CD133+ CICs, plays a critical role in tumorigenicity and cisplatin resistance in lung adenocarcinoma.Implications: Targeting USP22 represents a potential therapeutic approach to suppress CICs in lung adenocarcinoma partially through downregulation of ALDH1A3 expression. Mol Cancer Res; 16(7); 1161-71. ©2018 AACR.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Aldeído Oxirredutases/genética , Carcinogênese/genética , Tioléster Hidrolases/genética , Antígeno AC133/efeitos dos fármacos , Antígeno AC133/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Linhagem Celular Tumoral , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Ubiquitina Tiolesterase , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cell Rep ; 15(10): 2127-2135, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27239045

RESUMO

The Mis18 complex specifies the site of new CENP-A nucleosome assembly by recruiting the CENP-A-specific assembly factor HJURP (Holliday junction recognition protein). The human Mis18 complex consists of Mis18α, Mis18ß, and Mis18 binding protein 1 (Mis18BP1/hsKNL2). Although Mis18α and Mis18ß are highly homologous proteins, we find that their conserved YIPPEE domains mediate distinct interactions that are essential to link new CENP-A deposition to existing centromeres. We find that Mis18α directly interacts with the N terminus of Mis18BP1, whereas Mis18ß directly interacts with CENP-C during G1 phase, revealing that these proteins have evolved to serve distinct functions in centromeres of higher eukaryotes. The N terminus of Mis18BP1, containing both the Mis18α and CENP-C binding domains, is necessary and sufficient for centromeric localization. Therefore, the Mis18 complex contains dual CENP-C recognition motifs that are combinatorially required to generate robust centromeric localization that leads to CENP-A deposition.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Ciclo Celular , Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona/química , Sequência Conservada , Cisteína/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Domínios Proteicos
7.
Mol Cell ; 61(5): 774-787, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26942680

RESUMO

Centromeres are specialized chromatin domains specified by the centromere-specific CENP-A nucleosome. The stable inheritance of vertebrate centromeres is an epigenetic process requiring deposition of new CENP-A nucleosomes by HJURP. We show HJURP is recruited to centromeres through a direct interaction between the HJURP centromere targeting domain and the Mis18α-ß C-terminal coiled-coil domains. We demonstrate Mis18α and Mis18ß form a heterotetramer through their C-terminal coiled-coil domains. Mis18α-ß heterotetramer formation is required for Mis18BP1 binding and centromere recognition. S. pombe contains a single Mis18 isoform that forms a homotetramer, showing tetrameric Mis18 is conserved from fission yeast to humans. HJURP binding disrupts the Mis18α-ß heterotetramer and removes Mis18α from centromeres. We propose stable binding of Mis18 to centromeres in telophase licenses them for CENP-A deposition. Binding of HJURP deposits CENP-A at centromeres and facilitates the removal of Mis18, restricting CENP-A deposition to a single event per cell cycle.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Centrômero/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Telófase , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Autoantígenos/genética , Autoantígenos/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proteína Centromérica A , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Transdução de Sinais , Transfecção
9.
Mol Biol Cell ; 23(3): 401-11, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22130796

RESUMO

Spindle assembly, establishment of kinetochore attachment, and sister chromatid separation must occur during mitosis in a highly coordinated fashion to ensure accurate chromosome segregation. In most vertebrate cells, the nuclear envelope must break down to allow interaction between microtubules of the mitotic spindle and the kinetochores. It was previously shown that nuclear envelope breakdown (NEB) is not coordinated with centrosome separation and that centrosome separation can be either complete at the time of NEB or can be completed after NEB. In this study, we investigated whether the timing of centrosome separation affects subsequent mitotic events such as establishment of kinetochore attachment or chromosome segregation. We used a combination of experimental and computational approaches to investigate kinetochore attachment and chromosome segregation in cells with complete versus incomplete spindle pole separation at NEB. We found that cells with incomplete spindle pole separation exhibit higher rates of kinetochore misattachments and chromosome missegregation than cells that complete centrosome separation before NEB. Moreover, our mathematical model showed that two spindle poles in close proximity do not "search" the entire cellular space, leading to formation of large numbers of syntelic attachments, which can be an intermediate stage in the formation of merotelic kinetochores.


Assuntos
Centrossomo/fisiologia , Segregação de Cromossomos , Mitose , Fuso Acromático/fisiologia , Animais , Linhagem Celular , Simulação por Computador , Células Epiteliais/fisiologia , Células Epiteliais/ultraestrutura , Cinetocoros/fisiologia , Fatores de Tempo
10.
Proc Natl Acad Sci U S A ; 106(37): 15708-13, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19717443

RESUMO

The mitotic spindle self-assembles in prometaphase by a combination of centrosomal pathway, in which dynamically unstable microtubules search in space until chromosomes are captured, and a chromosomal pathway, in which microtubules grow from chromosomes and focus to the spindle poles. Quantitative mechanistic understanding of how spindle assembly can be both fast and accurate is lacking. Specifically, it is unclear how, if at all, chromosome movements and combining the centrosomal and chromosomal pathways affect the assembly speed and accuracy. We used computer simulations and high-resolution microscopy to test plausible pathways of spindle assembly in realistic geometry. Our results suggest that an optimal combination of centrosomal and chromosomal pathways, spatially biased microtubule growth, and chromosome movements and rotations is needed to complete prometaphase in 10-20 min while keeping erroneous merotelic attachments down to a few percent. The simulations also provide kinetic constraints for alternative error correction mechanisms, shed light on the dual role of chromosome arm volume, and compare well with experimental data for bipolar and multipolar HT-29 colorectal cancer cells.


Assuntos
Cromossomos/fisiologia , Cromossomos/ultraestrutura , Simulação por Computador , Modelos Biológicos , Fuso Acromático/fisiologia , Fuso Acromático/ultraestrutura , Linhagem Celular Tumoral , Humanos , Imageamento Tridimensional , Cinetocoros/fisiologia , Cinetocoros/ultraestrutura , Microtúbulos/fisiologia , Microtúbulos/ultraestrutura , Movimento , Rotação
11.
PLoS One ; 4(8): e6564, 2009 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-19668340

RESUMO

Many cancer cells display a CIN (Chromosome Instability) phenotype, by which they exhibit high rates of chromosome loss or gain at each cell cycle. Over the years, a number of different mechanisms, including mitotic spindle multipolarity, cytokinesis failure, and merotelic kinetochore orientation, have been proposed as causes of CIN. However, a comprehensive theory of how CIN is perpetuated is still lacking. We used CIN colorectal cancer cells as a model system to investigate the possible cellular mechanism(s) underlying CIN. We found that CIN cells frequently assembled multipolar spindles in early mitosis. However, multipolar anaphase cells were very rare, and live-cell experiments showed that almost all CIN cells divided in a bipolar fashion. Moreover, fixed-cell analysis showed high frequencies of merotelically attached lagging chromosomes in bipolar anaphase CIN cells, and higher frequencies of merotelic attachments in multipolar vs. bipolar prometaphases. Finally, we found that multipolar CIN prometaphases typically possessed gamma-tubulin at all spindle poles, and that a significant fraction of bipolar metaphase/early anaphase CIN cells possessed more than one centrosome at a single spindle pole. Taken together, our data suggest a model by which merotelic kinetochore attachments can easily be established in multipolar prometaphases. Most of these multipolar prometaphase cells would then bi-polarize before anaphase onset, and the residual merotelic attachments would produce chromosome mis-segregation due to anaphase lagging chromosomes. We propose this spindle pole coalescence mechanism as a major contributor to chromosome instability in cancer cells.


Assuntos
Instabilidade Cromossômica , Neoplasias Colorretais/genética , Cinetocoros , Fuso Acromático , Linhagem Celular Tumoral , Polaridade Celular , Neoplasias Colorretais/patologia , Humanos , Microscopia Confocal , Mitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA