Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant J ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761363

RESUMO

Polyamines are involved in several plant physiological processes. In Arabidopsis thaliana, five FAD-dependent polyamine oxidases (AtPAO1 to AtPAO5) contribute to polyamine homeostasis. AtPAO5 catalyzes the back-conversion of thermospermine (T-Spm) to spermidine and plays a role in plant development, xylem differentiation, and abiotic stress tolerance. In the present study, to verify whether T-Spm metabolism can be exploited as a new route to improve stress tolerance in crops and to investigate the underlying mechanisms, tomato (Solanum lycopersicum) AtPAO5 homologs were identified (SlPAO2, SlPAO3, and SlPAO4) and CRISPR/Cas9-mediated loss-of-function slpao3 mutants were obtained. Morphological, molecular, and physiological analyses showed that slpao3 mutants display increased T-Spm levels and exhibit changes in growth parameters, number and size of xylem elements, and expression levels of auxin- and gibberellin-related genes compared to wild-type plants. The slpao3 mutants are also characterized by improved tolerance to drought stress, which can be attributed to a diminished xylem hydraulic conductivity that limits water loss, as well as to a reduced vulnerability to embolism. Altogether, this study evidences conservation, though with some significant variations, of the T-Spm-mediated regulatory mechanisms controlling plant growth and differentiation across different plant species and highlights the T-Spm role in improving stress tolerance while not constraining growth.

2.
New Phytol ; 243(1): 72-81, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703003

RESUMO

Woody plants display some photosynthetic activity in stems, but the biological role of stem photosynthesis and the specific contributions of bark and wood to carbon uptake and oxygen evolution remain poorly understood. We aimed to elucidate the functional characteristics of chloroplasts in stems of different ages in Fraxinus ornus. Our investigation employed diverse experimental approaches, including microsensor technology to assess oxygen production rates in whole stem, bark, and wood separately. Additionally, we utilized fluorescence lifetime imaging microscopy (FLIM) to characterize the relative abundance of photosystems I and II (PSI : PSII chlorophyll ratio) in bark and wood. Our findings revealed light-induced increases in O2 production in whole stem, bark, and wood. We present the radial profile of O2 production in F. ornus stems, demonstrating the capability of stem chloroplasts to perform light-dependent electron transport. Younger stems exhibited higher light-induced O2 production and dark respiration rates than older ones. While bark emerged as the primary contributor to net O2 production under light conditions, our data underscored that wood chloroplasts are also photosynthetically active. The FLIM analysis unveiled a lower PSI abundance in wood than in bark, suggesting stem chloroplasts are not only active but also acclimate to the spectral composition of light reaching inner compartments.


Assuntos
Luz , Oxigênio , Caules de Planta , Madeira , Caules de Planta/metabolismo , Caules de Planta/efeitos da radiação , Oxigênio/metabolismo , Madeira/metabolismo , Escuridão , Fraxinus/metabolismo , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Casca de Planta/metabolismo , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo
3.
Trends Plant Sci ; 29(6): 662-667, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38218649

RESUMO

A recent study and related commentaries have raised new interest in the phenomenon of ultrasonic sound production by plants exposed to stress, especially drought. While recent technological advancements have allowed the demonstration that these sounds can propagate in the air surrounding plants, we remind readers here that research on sound production by plants is more than 100 years old. The mechanisms and patterns of sound emission from plants subjected to different stress factors are also reasonably understood, thanks to the pioneering work of John Milburn and others. By contrast, experimental evidence for a role of these sounds in plant-animal or plant-plant communication remains lacking and, at present, these ideas remain highly speculative.


Assuntos
Fenômenos Fisiológicos Vegetais , Plantas , Som , Plantas/metabolismo , Estresse Fisiológico , Secas
4.
Methods Mol Biol ; 2722: 51-63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37897599

RESUMO

The vulnerability to xylem embolism is a key trait underlying species-specific drought tolerance of plants, and hence is critical for screening climate-resilient crops and understanding vegetation responses to drought and heat waves. Yet, accurate determination of embolism in plant's xylem is challenging, because most traditional hydraulic techniques are destructive and prone to artefacts. Hence, direct and in vivo synchrotron-based X-ray micro-CT observation of xylem conduits has emerged as a key reference technique for accurate quantification of vulnerability to xylem embolism. Micro-CT is nowadays a fundamental tool for studies of plant hydraulic architecture, and this chapter describes the fundamentals of acquisition and processing of micro-CT images of plant xylem.


Assuntos
Embolia , Síncrotrons , Microtomografia por Raio-X , Xilema , Secas , Água , Folhas de Planta/fisiologia
5.
Tree Physiol ; 43(10): 1784-1795, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37427987

RESUMO

Plant hydraulic traits related to leaf drought tolerance, like the water potential at turgor loss point (TLP) and the water potential inducing 50% loss of hydraulic conductance (P50), are extremely useful to predict the potential impacts of drought on plants. While novel techniques have allowed the inclusion of TLP in studies targeting a large group of species, fast and reliable protocols to measure leaf P50 are still lacking. Recently, the optical method coupled with the gas injection (GI) technique has been proposed as a possibility to speed up the P50 estimation. Here, we present a comparison of leaf optical vulnerability curves (OVcs) measured in three woody species, namely Acer campestre (Ac), Ostrya carpinifolia (Oc) and Populus nigra (Pn), based on bench dehydration (BD) or GI of detached branches. For Pn, we also compared optical data with direct micro-computed tomography (micro-CT) imaging in both intact saplings and cut shoots subjected to BD. Based on the BD procedure, Ac, Oc and Pn had P50 values of -2.87, -2.47 and -2.11 MPa, respectively, while the GI procedure overestimated the leaf vulnerability (-2.68, -2.04 and -1.54 MPa for Ac, Oc and Pn, respectively). The overestimation was higher for Oc and Pn than for Ac, likely reflecting the species-specific vessel lengths. According to micro-CT observations performed on Pn, the leaf midrib showed none or very few embolized conduits at -1.2 MPa, consistent with the OVcs obtained with the BD procedure but at odds with that derived on the basis of GI. Overall, our data suggest that coupling the optical method with GI might not be a reliable technique to quantify leaf hydraulic vulnerability since it could be affected by the 'open-vessel' artifact. Accurate detection of xylem embolism in the leaf vein network should be based on BD, preferably of intact up-rooted plants.


Assuntos
Acer , Embolia , Microtomografia por Raio-X , Folhas de Planta , Xilema , Água , Secas
6.
Plants (Basel) ; 12(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37446973

RESUMO

The pressure chamber is the most used tool for plant water status monitoring. However, species/cultivar and seasonal effects on protocols for reliable water potential determination have not been properly tested. In four grapevine cultivars and two times of the season (early season, Es; late season, Ls, under moderate drought), we assessed the maximum sample storage time before leaf water potential (Ψleaf) measurements and the minimum equilibration time for stem water potential (Ψstem) determination, taking 24 h leaf cover as control. In 'Pinot gris', Ψleaf already decreased after 1 h leaf storage in both campaigns, dropping by 0.4/0.5 MPa after 3 h, while in 'Refosk', it decreased by 0.1 MPa after 1 and 2 h in Es and Ls, respectively. In 'Merlot' and 'Merlot Kanthus', even 3 h storage did not affect Ψleaf. In Es, the minimum Ψstem equilibration was 1 h for 'Refosk' and 10 min for 'Pinot gris' and 'Merlot'. In Ls, 'Merlot Kanthus' required more than 2 h equilibration, while 1 h to 10 min was sufficient for the other cultivars. The observed cultivar and seasonal differences indicate that the proposed tests should be routinely performed prior to experiments to define ad hoc procedures for water status determination.

7.
Plant Cell Physiol ; 64(8): 920-932, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37384580

RESUMO

Xylem embolism is one of the possible outcomes of decreasing xylem pressure when plants face drought. Recent studies have proposed a role for non-structural carbohydrates (NSCs) in osmotic pressure generation, required for refilling embolized conduits. Potted cuttings of grapevine Grenache and Barbera, selected for their adaptation to different climatic conditions, were subjected to a drought stress followed by re-irrigation. Stem embolism rate and its recovery were monitored in vivo by X-ray micro-computed tomography (micro-CT). The same plants were further analyzed for xylem conduit dimension and NSC content. Both cultivars significantly decreased Ψpd in response to drought and recovered from xylem embolism after re-irrigation. However, although the mean vessel diameter was similar between the cultivars, Barbera was more prone to embolism. Surprisingly, vessel diameter was apparently reduced during recovery in this cultivar. Hydraulic recovery was linked to sugar content in both cultivars, showing a positive relationship between soluble NSCs and the degree of xylem embolism. However, when starch and sucrose concentrations were considered separately, the relationships showed cultivar-specific and contrasting trends. We showed that the two cultivars adopted different NSC-use strategies in response to drought, suggesting two possible scenarios driving conduit refilling. In Grenache, sucrose accumulation seems to be directly linked to embolism formation and possibly sustains refilling. In Barbera, maltose/maltodextrins could be involved in a conduit recovery strategy via the formation of cell-wall hydrogels, likely responsible for the reduction of conduit lumen detected by micro-CT.


Assuntos
Carboidratos , Secas , Microtomografia por Raio-X , Xilema/fisiologia , Sacarose , Água
8.
Tree Physiol ; 43(6): 893-908, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-36738252

RESUMO

Leaves are the most important photosynthetic organs in most woody plants, but chloroplasts are also found in organs optimized for other functions. However, the actual photosynthetic efficiency of these chloroplasts is still unclear. We analyzed bark and wood chloroplasts of Fraxinus ornus L. saplings. Optical and spectroscopic methods were applied to stem samples and compared with leaves. A sharp light gradient was detected along the stem radial direction, with blue light mainly absorbed by the outer bark, and far-red-enriched light reaching the underlying xylem and pith. Chlorophylls were evident in the xylem rays and the pith and showed an increasing concentration gradient toward the bark. The stem photosynthetic apparatus showed features typical of acclimation to a low-light environment, such as larger grana stacks, lower chlorophyll a/b and photosystem I/II ratios compared with leaves. Despite likely receiving very few photons, wood chloroplasts were photosynthetically active and fully capable of generating a light-dependent electron transport. Our data provide a comprehensive scenario of the functional features of bark and wood chloroplasts in a woody species and suggest that stem photosynthesis is coherently optimized to the prevailing micro-environmental conditions at the bark and wood level.


Assuntos
Fraxinus , Árvores , Árvores/metabolismo , Madeira/metabolismo , Clorofila A/metabolismo , Secas , Casca de Planta/metabolismo , Cloroplastos/metabolismo , Fotossíntese , Clorofila/metabolismo , Luz , Folhas de Planta/metabolismo , Complexo de Proteína do Fotossistema II
9.
Plant Cell Environ ; 46(1): 119-132, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36266962

RESUMO

Plant water content is a simple and promising parameter for monitoring drought-driven plant mortality risk. However, critical water content thresholds leading to cell damage and plant failure are still unknown. Moreover, it is unclear whether whole-plant or a specific organ water content is the most reliable indicator of mortality risk. We assessed differences in dehydration thresholds in leaf, stem and root samples, hampering the organ-specific rehydration capacity and increasing the mortality risk. We also tested eventual differences between a fast experimental dehydration of uprooted plants, compared to long-term water stress induced by withholding irrigation in potted plants. We investigated three species with different growth forms and leaf habits i.e., Helianthus annuus (herbaceous), Populus nigra (deciduous tree) and Quercus ilex (evergreen tree). Results obtained by the two dehydration treatments largely overlapped, thus validating bench dehydration as a fast but reliable method to assess species-specific critical water content thresholds. Regardless of the organ considered, a relative water content value of 60% induced significant cell membrane damage and loss of rehydration capacity, thus leading to irreversible plant failure and death.


Assuntos
Folhas de Planta
10.
Glob Chang Biol ; 28(22): 6640-6652, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054311

RESUMO

Predicting the consequences of climate change is of utmost importance to mitigate impacts on vulnerable ecosystems; plant hydraulic traits are particularly useful proxies for predicting functional disruptions potentially occurring in the near future. This study assessed the current and future regional patterns of leaf water potential at turgor loss point (Ψtlp ) by measuring and projecting the Ψtlp of 166 vascular plant species (159 angiosperms and 7 gymnosperms) across a large climatic range spanning from alpine to Mediterranean areas in NE Italy. For angiosperms, random forest models predicted a consistent shift toward more negative values in low-elevation areas, whereas for gymnosperms the pattern was more variable, particularly in the alpine sector (i.e., Alps and Prealps). Simulations were also developed to evaluate the number of threatened species under two Ψtlp plasticity scenarios (low vs. high plasticity), and it was found that in the worst-case scenario approximately 72% of the angiosperm species and 68% of gymnosperms within a location were at risk to exceed their physiological plasticity. The different responses to climate change by specific clades might produce reassembly in natural communities, undermining the resilience of natural ecosystems to climate change.


Assuntos
Mudança Climática , Magnoliopsida , Cycadopsida , Secas , Ecossistema , Magnoliopsida/fisiologia , Folhas de Planta/fisiologia , Água/fisiologia
11.
Plants (Basel) ; 11(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35161287

RESUMO

(1) Recent studies suggested that stem photosynthesis could favor bark water uptake and embolism recovery when stem segments are soaked in water under light conditions, but evidence for this phenomenon in drought-resistant Mediterranean species with photosynthetic stems is missing. (2) Embolism recovery upon immersion in water for 2 h-4 h under light was assessed (i) via a classical hydraulic method in leafless Fraxinus ornus and Olea europaea branch segments stressed to xylem water potentials (Yxyl) inducing ca. 50% loss of hydraulic conductivity (PLC) and (ii) via X-ray micro-CT imaging of the stem segments of drought-stressed potted F. ornus saplings. Hydraulic recovery was also assessed in vivo in intact drought-stressed F. ornus saplings upon soil re-irrigation. (3) Intact F. ornus plants recovered hydraulic function through root water uptake. Conversely, the soaked stem segments of both species did not refill embolized conduits, although Yxyl recovered to pre-stress levels (between -0.5 MPa and -0.2 MPa). (4) We hypothesize that xylem embolism recovery through bark water uptake, even in light conditions, may not be a common phenomenon in woody plants and/or that wounds caused by cutting short stem segments might inhibit the refilling process upon soaking.

12.
Plant Cell Environ ; 45(1): 55-68, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34783044

RESUMO

Xylem conductive capacity is a key determinant of plant hydraulic function and intimately linked to photosynthesis and productivity, but can be impeded by temporary or permanent conduit dysfunctions. Here we show that persistent xylem dysfunctions in unstressed plants are frequent in Alpine dwarf shrubs and occur in various but species-specific cross-sectional patterns. Combined synchrotron micro-computed tomography (micro-CT) imaging, xylem staining, and flow measurements in saturated samples of six widespread Ericaceae species evidence a high proportion (19%-50%) of hydraulically nonfunctional xylem areas in the absence of drought stress, with regular distribution of dysfunctions between or within growth rings. Dysfunctions were only partly reversible and reduced the specific hydraulic conductivity to 1.38 to 3.57 ×10-4 m2 s-1 MPa-1 . Decommission of inner growth rings was clearly related to stem age and a higher vulnerability to cavitation of older rings, while the high proportion of nonfunctional conduits in each annual ring needs further investigations. The lower the xylem fraction contributing to the transport function, the higher was the hydraulic efficiency of conducting xylem areas. Improved understanding of the functional lifespan of xylem elements and the prevalence and nature of dysfunctions is critical to correctly assess structure-function relationships and whole-plant hydraulic strategies.


Assuntos
Ericaceae/fisiologia , Xilema/fisiologia , Áustria , Ericaceae/anatomia & histologia , Ericaceae/citologia , Região dos Alpes Europeus , Caules de Planta/anatomia & histologia , Caules de Planta/citologia , Especificidade da Espécie , Síncrotrons , Fatores de Tempo , Microtomografia por Raio-X , Xilema/anatomia & histologia , Xilema/citologia
13.
Tree Physiol ; 41(11): 2004-2007, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34542153
14.
Plant Physiol Biochem ; 166: 215-224, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34119871

RESUMO

Global warming is exposing plants to increased risks of drought-driven mortality. Recent advances suggest that hydraulic failure is a key process leading to plant death, and the identification of simple and reliable proxies of species-specific risk of irreversible hydraulic damage is urgently required. We assessed the predictive power of leaf water content and shrinkage for monitoring leaf hydraulic failure in two Mediterranean native species, Salvia ceratophylloides (Sc) and S. officinalis (So). The study species showed significant differences in relative water content (RWC) thresholds inducing loss of rehydration capacity, as well as leaf hydraulic conductance (KL) impairment. Sc turned out to be more resistant to drought than So. However, Sc and So showed different leaf saturated water content values, so that different RWC values actually corresponded to similar absolute leaf water content. Our findings suggest that absolute leaf water content and leaf water potential, but not RWC, are reliable parameters for predicting the risk of leaf hydraulic impairment of two Salvia species, and their potential risk of irreversible damage under severe drought. Moreover, the lack of any KL decline until the turgor loss point in Sc, coupled to consistent leaf shrinkage, rejects the hypothesis to use leaf shrinkage as a proxy to predict KL vulnerability, at least in species with high leaf capacitance. Robust linear correlations between KL decline and electrolyte leakage measurements suggested a role of membrane damage in driving leaf hydraulic collapse.


Assuntos
Salvia , Água , Secas , Folhas de Planta , Especificidade da Espécie
16.
New Phytol ; 231(1): 108-121, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33811346

RESUMO

Nonstructural carbohydrates (NSCs) have been suggested to affect xylem transport under fluctuating water availability, but conclusive evidence is still lacking. We tested the effect of shade-induced NSC depletion on xylem vulnerability to embolism and hydraulic recovery on Populus nigra saplings. Vulnerability was assessed in light-exposed (L) and shaded (S) plants with the hydraulic method, and in vivo with the optical method and X-ray micro-computed tomography. Plants were stressed to 80% loss of hydraulic conductance (PLC) and re-irrigated to check for possible recovery. We measured PLC, bark and wood NSC content, as well as xylem sap pH, surface tension (γsap ) and sugar concentration, before, during and after drought. Shading induced depletion of stem NSC (mainly starch) reserves. All methods converged in indicating higher xylem vulnerability in S than in L plants. This difference was not explained by xylem vessel and pit anatomy or by γsap . Shading impeded sap acidification and sugar accumulation during drought in S plants and prevented hydraulic recovery, which was observed in L plants. Our results highlight the importance of stem NSCs to sustain xylem hydraulic functioning during drought and suggest that light and/or adequate stem NSC thresholds are required to trigger xylem sap chemical changes involved in embolism recovery.


Assuntos
Embolia , Populus , Carboidratos , Secas , Água , Microtomografia por Raio-X , Xilema
17.
Physiol Plant ; 172(1): 29-40, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33161600

RESUMO

Leaf hydraulic conductance (Kleaf ) is highly dynamic and typically responds to changes in water status and irradiance. However, the relative contribution of vascular (Kx ) and extra-vascular (Kox ) water pathways to Kleaf changes in response to water potential decline and recovery in function of light conditions remains poorly investigated. We investigated the dynamic responses of leaf hydraulics in Populus nigra L. by measuring Kleaf , Kx , and Kox changes under drought and upon recovery. Measurements were done at both low and high irradiance (LI and HI, respectively). Kleaf increased and became more vulnerable to dehydration under HI conditions than LI, due to marked changes of Kox . After re-watering, Kleaf recovered in parallel with Kox recovery, but Kleaf response to irradiance remained inhibited. Strong correlations between Kleaf and drought-induced membrane damage demonstrated the relevance of the cell-to-cell water pathway in driving the dynamic responses of Kleaf under drought and recovery. Our findings highlight the importance of coordination between water and light availability in modulating the overall Kleaf response to environmental conditions.


Assuntos
Populus , Secas , Folhas de Planta , Água
18.
New Phytol ; 229(2): 820-830, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32890423

RESUMO

In drought-stressed plants a coordinated cascade of chemical and transcriptional adjustments occurs at the same time as embolism formation. While these processes do not affect embolism formation during stress, they may prime stems for recovery during rehydration by modifying apoplast pH and increasing sugar concentration in the xylem sap. Here we show that in vivo treatments modifying apoplastic pH (stem infiltration with a pH buffer) or reducing stem metabolic activity (infiltration with sodium vanadate and sodium cyanide; plant exposure to carbon monoxide) can reduce sugar accumulation, thus disrupting or delaying the recovery process. Application of the vanadate treatment (NaVO3, an inhibitor of many ATPases) completely halted recovery from drought-induced embolism for up to 24 h after re-irrigation, while partial recovery was observed in vivo in control plants using X-ray microcomputed tomography. Our results suggest that stem hydraulic recovery in poplar is a biological, energy-dependent process that coincides with accumulation of sugars in the apoplast during stress. Recovery and damage are spatially coordinated, with embolism formation occurring from the inside out and refilling from the outside in. The outside-in pattern highlights the importance of xylem proximity to the sugars within the phloem to the embolism recovery process.


Assuntos
Secas , Embolia , Caules de Planta , Água , Microtomografia por Raio-X , Xilema
19.
New Phytol ; 229(1): 199-212, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32772381

RESUMO

Drought-induced tree mortality frequently occurs in patches with different spatial and temporal distributions, which is only partly explained by inter- and intraspecific variation in drought tolerance. We investigated whether bedrock properties, with special reference to rock water storage capacity, affects tree water status and drought response in a rock-dominated landscape. We measured primary porosity and available water content of breccia (B) and dolostone (D) rocks. Saplings of Fraxinus ornus were grown in pots filled with soil or soil mixed with B and D rocks, and subjected to an experimental drought. Finally, we measured seasonal changes in water status of trees in field sites overlying B or D bedrock. B rocks were more porous and stored more available water than D rocks. Potted saplings grown with D rocks had less biomass and suffered more severe water stress than those with B rocks. Trees in sites with B bedrock had more favourable water status than those on D bedrock which also suffered drought-induced canopy dieback. Bedrock represents an important water source for plants under drought. Different bedrock features translate into contrasting below-ground water availability, leading to landscape-level heterogeneity of the impact of drought on tree water status and dieback.


Assuntos
Árvores , Água , Secas , Estações do Ano , Solo
20.
Tree Physiol ; 40(8): 1043-1057, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32186735

RESUMO

Drought compromises plant's ability to replace transpired water vapor with water absorbed from the soil, leading to extensive xylem dysfunction and causing plant desiccation and death. Short-term plant responses to drought rely on stomatal closure, and on the plant's ability to recover hydraulic functioning after drought relief. We hypothesize a key role for abscisic acid (ABA) not only in the control of stomatal aperture, but also in hydraulic recovery. Young plants of Populus nigra L. were used to investigate possible relationships among ABA, non-structural carbohydrates (NSC) and xylem hydraulic function under drought and after re-watering. In Populus nigra L. plants subjected to drought, water transport efficiency and hydraulic recovery after re-watering were monitored by measuring the percentage loss of hydraulic conductivity (PLC) and stem specific hydraulic conductivity (Kstem). In the same plants ABA and NSC were quantified in wood and bark. Drought severely reduced stomatal conductance (gL) and markedly increased the PLC. Leaf and stem water potential, and stem hydraulic efficiency fully recovered within 24 h after re-watering, but gL values remained low. After re-watering, we found significant correlations between changes in ABA content and hexoses concentration both in wood and bark. Our findings suggest a role for ABA in the regulation of stem carbohydrate metabolism and starch mobilization upon drought relief, possibly promoting the restoration of xylem transport capacity.


Assuntos
Secas , Populus , Ácido Abscísico , Carboidratos , Folhas de Planta , Estômatos de Plantas , Transpiração Vegetal , Água , Xilema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA