Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Pers Med ; 13(12)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138917

RESUMO

Hypothermia is a widespread condition all over the world, with a high risk of mortality in pre-hospital and in-hospital settings when it is not promptly and adequately treated. In this review, we aim to describe the main specificities of the diagnosis and treatment of hypothermia through consideration of the physiological changes that occur in hypothermic patients. Hypothermia can occur due to unfavorable environmental conditions as well as internal causes, such as pathological states that result in reduced heat production, increased heat loss or ineffectiveness of the thermal regulation system. The consequences of hypothermia affect several systems in the body-the cardiovascular system, the central and peripheral nervous systems, the respiratory system, the endocrine system and the gastrointestinal system-but also kidney function, electrolyte balance and coagulation. Once hypothermia is recognized, prompt treatment, focused on restoring body temperature and supporting vital functions, is fundamental in order to avert preventable death. It is important to also denote the fact that CPR has specificities related to the unique profile of hypothermic patients.

2.
Biomedicines ; 10(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36289804

RESUMO

Hyperthermia is an internal body temperature increase above 40.5 °C; normally internal body temperature is kept constant through natural homeostatic mechanisms. Heat-related illnesses occur due to exposure to high environmental temperatures in conditions in which an organism is unable to maintain adequate homeostasis. This can happen, for example, when the organism is unable to dissipate heat adequately. Heat dissipation occurs through evaporation, conduction, convection, and radiation. Heat disease exhibits a continuum of signs and symptoms ranging from minor to major clinical pictures. Minor clinical pictures include cramps, syncope, edema, tetany, and exhaustion. Major clinical pictures include heatstroke and life-threatening heat stroke and typically are expressed in the presence of an extremely high body temperature. There are also some categories of people at greater risk of developing these diseases, due to exposure in particular geographic areas (e.g., hot humid environments), to unchangeable predisposing conditions (e.g., advanced age, young age (i.e., children), diabetes, skin disease with reduced sweating), to modifiable risk factors (e.g., alcoholism, excessive exercise, infections), to partially modifiable risk factors (obesity), to certain types of professional activity (e.g., athletes, military personnel, and outdoor laborers) or to the effects of drug treatment (e.g., beta-blockers, anticholinergics, diuretics). Heat-related illness is largely preventable.

3.
Drugs R D ; 22(2): 155-163, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35553396

RESUMO

BACKGROUND AND OBJECTIVE: Hydroxychloroquine was widely used during the severe acute respiratory syndrome coronavirus 2 pandemic as an antiviral drug. Most previous pharmacokinetic/pharmacodynamic studies on hydroxychloroquine were conducted on healthy volunteers or patients receiving long-term therapy. There are no studies on the elimination of hydroxychloroquine after short-term treatments. Hydroxychloroquine is known to have a pro-arrhythmic effect through QT interval prolongation, but data in this setting are not conclusive. Our aims were to estimate the time needed for hydroxychloroquine concentrations (CHCQ) to drop to a safe concentration (500 ng/mL) after a short-term therapeutic cycle and to correlate the corrected QT interval with CHCQ. METHODS: We collected blood samples and electrocardiograms of patients who underwent short-term therapy with hydroxychloroquine during drug intake and after discontinuation. Hydroxychloroquine concentrations were determined by high-performance liquid chromatography-tandem mass spectrometry and analysed with a linear regression model to estimate the elimination time of the drug after its discontinuation. We conducted a multivariate analysis of the corrected QT interval correlation with CHCQ. RESULTS: Our data suggest that short-term hydroxychloroquine courses can generate significant CHCQ persisting above 500 ng/mL up to 16 days after discontinuation of treatment. Corrected QT interval prolongation significantly correlates with CHCQ. CONCLUSIONS: The study confirms the long half-life of hydroxychloroquine and its effect on the corrected QT interval even after short-term courses of the drug. This can inform the clinician using hydroxychloroquine treatments that it would be safer to start or re-initiate treatments with corrected QT interval-prolonging potential 16 days after hydroxychloroquine discontinuation.


Assuntos
Tratamento Farmacológico da COVID-19 , Síndrome do QT Longo , Eletrocardiografia , Humanos , Hidroxicloroquina/efeitos adversos , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/epidemiologia , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA