Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (210)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39158282

RESUMO

The DNA damage response is a genetic information safeguard that protects cells from perpetuating damaged DNA. The characterization of the proteins that cooperate in this process allows the identification of alternative targets for therapeutic intervention in several diseases, such as cancer, aging-related diseases, and chronic inflammation. The Proximity Ligand Assay (PLA) emerged as a tool for estimating interaction between proteins as well as spatial proximity among organelles or cellular structures and allows the temporal localization and co-localization analysis under stress conditions, for instance. The method is simple because it is similar to conventional immunofluorescence and allows the staining of an organelle, cellular structure, or a specific marker such as mitochondria, endoplasmic reticulum, PML bodies, or DNA double-strand marker, yH2AX simultaneously. The phosphorylation of the S139 at Histone 2A variant, H2AX, then referred to as yH2AX, is widely used as a very sensitive and specific marker of DNA double-strand breaks. Each focus of yH2AX staining corresponds to one break in DNA that occurs a few minutes after the damage. The analysis of changes in yH2AX foci is the most common assay for studying if the protein of interest is implicated in DNA damage response (DDR). Whether a direct role in the DNA damage site is expected, fluorescence microscopy is used to verify the colocalization of the protein of interest with yH2AX foci. However, except for the new super-resolution fluorescence methods, to conclude, the local interaction with DNA damage sites can be a little subjective. Here, we show an assay to evaluate the localization of proteins in the DDR pathway using yH2AX as a marker of the damage site. This assay can be used to characterize the temporal localization under different insults that cause DNA damage.


Assuntos
Dano ao DNA , Histonas , Humanos , Histonas/metabolismo , Histonas/análise , Ligantes , Quebras de DNA de Cadeia Dupla
2.
Int J Biol Macromol ; 254(Pt 1): 127741, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287568

RESUMO

Mammaliicoccus sciuri, a commensal and pathogenic bacterium of significant clinical and veterinary relevance, expresses exfoliative toxin C (ExhC), a specific glutamyl endopeptidase belonging to the chymotrypsin family as the principal virulence factor. However, unlike most members of this family, ETs are inactive against a wide range of substrates and possess exquisite specificity for desmoglein-1 (Dsg1), a cadherin-like adhesion molecule that is crucial to maintain tissue integrity, thereby preventing the separation of skin cells and the entry of pathogens. ExhC is of clinical importance since in addition to causing exfoliation in pigs and mice, it induces necrosis in multiple mammalian cell lines, a property not observed for other ETs. Previous experiments have implicated the ExhC79-128 fragment in causing necrosis. Site-directed mutagenesis of specific residues within this fragment were studied and led to the design of an ExhC variant containing four-point mutations (ExhCmut4) lacking necrotic potential but retaining nearly wild-type (wt) levels of enzymatic activity. Moreover, the determination of the ExhCwt and ExhCmut4 crystal structures identified the conformation in the necrosis-linked region. These results constitute an important step toward the understanding of the mechanisms underlying the necrotic and epidermolytic activity of ExhC.


Assuntos
Aminoácidos , Exfoliatinas , Animais , Suínos , Camundongos , Aminoácidos/metabolismo , Exfoliatinas/genética , Exfoliatinas/metabolismo , Exfoliatinas/farmacologia , Staphylococcus , Necrose , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA