Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 298: 120772, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39117095

RESUMO

Relating brain activity associated with a complex stimulus to different properties of that stimulus is a powerful approach for constructing functional brain maps. However, when stimuli are naturalistic, their properties are often correlated (e.g., visual and semantic features of natural images, or different layers of a convolutional neural network that are used as features of images). Correlated properties can act as confounders for each other and complicate the interpretability of brain maps, and can impact the robustness of statistical estimators. Here, we present an approach for brain mapping based on two proposed methods: stacking different encoding models and structured variance partitioning. Our stacking algorithm combines encoding models that each uses as input a feature space that describes a different stimulus attribute. The algorithm learns to predict the activity of a voxel as a linear combination of the outputs of different encoding models. We show that the resulting combined model can predict held-out brain activity better or at least as well as the individual encoding models. Further, the weights of the linear combination are readily interpretable; they show the importance of each feature space for predicting a voxel. We then build on our stacking models to introduce structured variance partitioning, a new type of variance partitioning that takes into account the known relationships between features. Our approach constrains the size of the hypothesis space and allows us to ask targeted questions about the similarity between feature spaces and brain regions even in the presence of correlations between the feature spaces. We validate our approach in simulation, showcase its brain mapping potential on fMRI data, and release a Python package. Our methods can be useful for researchers interested in aligning brain activity with different layers of a neural network, or with other types of correlated feature spaces.

2.
bioRxiv ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39071351

RESUMO

A stimulus can be familiar for multiple reasons. It might have been recently encountered, or is similar to recent experience, or is similar to 'typical' experience. Understanding how the brain translates these sources of similarity into memory decisions is a fundamental, but challenging goal. Here, using fMRI, we computed neural similarity between a current stimulus and events from different temporal windows in the past and future (from seconds to days). We show that trial-by-trial memory decisions (is this stimulus 'old'?) were predicted by the difference in similarity to past vs. future events (temporal asymmetry). This relationship was (i) evident in lateral parietal and occipitotemporal cortices, (ii) strongest when considering events from the recent past (minutes ago), and (iii) most pronounced when veridical (true) memories were weak. These findings suggest a new perspective in which the brain supports memory decisions by comparing what actually occurred to what is likely to occur.

3.
bioRxiv ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38712051

RESUMO

Measurements of neural responses to identically repeated experimental events often exhibit large amounts of variability. This noise is distinct from signal, operationally defined as the average expected response across repeated trials for each given event. Accurately distinguishing signal from noise is important, as each is a target that is worthy of study (many believe noise reflects important aspects of brain function) and it is important not to confuse one for the other. Here, we introduce a principled modeling approach in which response measurements are explicitly modeled as the sum of samples from multivariate signal and noise distributions. In our proposed method-termed Generative Modeling of Signal and Noise (GSN)-the signal distribution is estimated by subtracting the estimated noise distribution from the estimated data distribution. We validate GSN using ground-truth simulations and demonstrate the application of GSN to empirical fMRI data. In doing so, we illustrate a simple consequence of GSN: by disentangling signal and noise components in neural responses, GSN denoises principal components analysis and improves estimates of dimensionality. We end by discussing other situations that may benefit from GSN's characterization of signal and noise, such as estimation of noise ceilings for computational models of neural activity. A code toolbox for GSN is provided with both MATLAB and Python implementations.

4.
ArXiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38259351

RESUMO

Vision is widely understood as an inference problem. However, two contrasting conceptions of the inference process have each been influential in research on biological vision as well as the engineering of machine vision. The first emphasizes bottom-up signal flow, describing vision as a largely feedforward, discriminative inference process that filters and transforms the visual information to remove irrelevant variation and represent behaviorally relevant information in a format suitable for downstream functions of cognition and behavioral control. In this conception, vision is driven by the sensory data, and perception is direct because the processing proceeds from the data to the latent variables of interest. The notion of "inference" in this conception is that of the engineering literature on neural networks, where feedforward convolutional neural networks processing images are said to perform inference. The alternative conception is that of vision as an inference process in Helmholtz's sense, where the sensory evidence is evaluated in the context of a generative model of the causal processes that give rise to it. In this conception, vision inverts a generative model through an interrogation of the sensory evidence in a process often thought to involve top-down predictions of sensory data to evaluate the likelihood of alternative hypotheses. The authors include scientists rooted in roughly equal numbers in each of the conceptions and motivated to overcome what might be a false dichotomy between them and engage the other perspective in the realm of theory and experiment. The primate brain employs an unknown algorithm that may combine the advantages of both conceptions. We explain and clarify the terminology, review the key empirical evidence, and propose an empirical research program that transcends the dichotomy and sets the stage for revealing the mysterious hybrid algorithm of primate vision.

5.
ArXiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168454

RESUMO

The release of large datasets and developments in AI have led to dramatic improvements in decoding methods that reconstruct seen images from human brain activity. We evaluate the prospect of further improving recent decoding methods by optimizing for consistency between reconstructions and brain activity during inference. We sample seed reconstructions from a base decoding method, then iteratively refine these reconstructions using a brain-optimized encoding model that maps images to brain activity. At each iteration, we sample a small library of images from an image distribution (a diffusion model) conditioned on a seed reconstruction from the previous iteration. We select those that best approximate the measured brain activity when passed through our encoding model, and use these images for structural guidance during the generation of the small library in the next iteration. We reduce the stochasticity of the image distribution at each iteration, and stop when a criterion on the "width" of the image distribution is met. We show that when this process is applied to recent decoding methods, it outperforms the base decoding method as measured by human raters, a variety of image feature metrics, and alignment to brain activity. These results demonstrate that reconstruction quality can be significantly improved by explicitly aligning decoding distributions to brain activity distributions, even when the seed reconstruction is output from a state-of-the-art decoding algorithm. Interestingly, the rate of refinement varies systematically across visual cortex, with earlier visual areas generally converging more slowly and preferring narrower image distributions, relative to higher-level brain areas. Brain-optimized inference thus offers a succinct and novel method for improving reconstructions and exploring the diversity of representations across visual brain areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA