Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Diabetes Technol Ther ; 26(2): 87-94, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37976038

RESUMO

Aims: Self-collection of a blood sample for autoantibody testing has potential to facilitate screening for type 1 diabetes risk. We sought to determine the feasibility and acceptability of this approach and the performance of downstream antibody assays. Methods: People living with type 1 diabetes and their family members (N = 97) provided paired capillary blood spot and serum samples collected, respectively, by themselves and a health worker. They provided feedback on the ease, convenience, and painfulness of blood spot collection. Islet antibodies were measured in blood spots by antibody detection by agglutination PCR (ADAP) or multiplex enzyme-linked immunoassay (ELISA), and in serum by radioimmunoassay (RIA) or ELISA. Results: Using serum RIA and ELISA to define antibody status, 50 antibody-negative (Abneg) and 47 antibody-positive (Abpos) participants enrolled, of whom 43 and 47, respectively, returned testable blood spot samples. The majority indicated that self-collection was easier, more convenient, and less painful than formal venesection. The sensitivity and specificity for detection of Abpos by blood spot were, respectively, 85% and 98% for ADAP and 87% and 100% for multiplex ELISA. The specificities by ADAP for each of the four antigen specificities ranged from 98% to 100% and areas under the receiver operator curve from 0.841 to 0.986. Conclusions: Self-collected blood spot sampling is preferred over venesection by research participants. ADAP and multiplex ELISA are highly specific assays for islet antibodies in blood spots with acceptable performance for use alone or in combination to facilitate screening for type 1 diabetes risk. Clinical Trial Registration number: ACTRN12620000510943.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Estudos de Viabilidade , Programas de Rastreamento , Autoanticorpos , Sensibilidade e Especificidade
2.
JCI Insight ; 8(23)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37874660

RESUMO

Regulatory T cells (Tregs) have potential for the treatment of autoimmune diseases and graft rejection. Antigen specificity and functional stability are considered critical for their therapeutic efficacy. In this study, expansion of human Tregs in the presence of porcine PBMCs (xenoantigen-expanded Tregs, Xn-Treg) allowed the selection of a distinct Treg subset, coexpressing the activation/memory surface markers HLA-DR and CD27 with enhanced proportion of FOXP3+Helios+ Tregs. Compared with their unsorted and HLA-DR+CD27+ double-positive (DP) cell-depleted Xn-Treg counterparts, HLA-DR+CD27+ DP-enriched Xn-Tregs expressed upregulated Treg function markers CD95 and ICOS with enhanced suppression of xenogeneic but not polyclonal mixed lymphocyte reaction. They also had less Treg-specific demethylation in the region of FOXP3 and were more resistant to conversion to effector cells under inflammatory conditions. Adoptive transfer of porcine islet recipient NOD/SCID IL2 receptor γ-/- mice with HLA-DR+CD27+ DP-enriched Xn-Tregs in a humanized mouse model inhibited porcine islet graft rejection mediated by 25-fold more human effector cells. The prolonged graft survival was associated with enhanced accumulation of FOXP3+ Tregs and upregulated expression of Treg functional genes, IL10 and cytotoxic T lymphocyte antigen 4, but downregulated expression of effector Th1, Th2, and Th17 cytokine genes, within surviving grafts. Collectively, human HLA-DR+CD27+ DP-enriched Xn-Tregs expressed a specific regulatory signature that enabled identification and isolation of antigen-specific and functionally stable Tregs with potential as a Treg-based therapy.


Assuntos
Antígenos HLA-DR , Linfócitos T Reguladores , Camundongos , Humanos , Animais , Suínos , Camundongos SCID , Camundongos Endogâmicos NOD , Antígenos HLA-DR/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
3.
Diabetes Res Clin Pract ; 184: 109189, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35051423

RESUMO

AIMS: Studies of the gut microbiome have focused on its bacterial composition. We aimed to characterize the gut fungal microbiome (mycobiome) across pregnancy in women with and without type 1 diabetes. METHODS: Faecal samples (n = 162) were collected from 70 pregnant women (45 with and 25 without type 1 diabetes) across all trimesters. Fungi were analysed by internal transcribed spacer 1 amplicon sequencing. Markers of intestinal inflammation (faecal calprotectin) and intestinal epithelial integrity (serum intestinal fatty acid binding protein; I-FABP), and serum antibodies to Saccharomyces cerevisiae (ASCA) were measured. RESULTS: Women with type 1 diabetes had decreased fungal alpha diversity by the third trimester, associated with an increased abundance of Saccharomyces cerevisiae that was inversely related to the abundance of the anti-inflammatory butyrate-producing bacterium Faecalibacterium prausnitzii. Women with type 1 diabetes had higher concentrations of calprotectin, I-FABP and ASCA. CONCLUSIONS: Women with type 1 diabetes exhibit a shift in the gut mycobiome across pregnancy associated with evidence of gut inflammation and impaired intestinal barrier function. The relevance of these findings to the higher rate of pregnancy complications in type 1 diabetes warrants further study.


Assuntos
Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Micobioma , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Humanos , Inflamação , Gravidez , Saccharomyces cerevisiae
4.
Diabetes ; 71(3): 566-577, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35007320

RESUMO

Type 1 diabetes in children is heralded by a preclinical phase defined by circulating autoantibodies to pancreatic islet antigens. How islet autoimmunity is initiated and then progresses to clinical diabetes remains poorly understood. Only one study has reported gene expression in specific immune cells of children at risk associated with progression to islet autoimmunity. We analyzed gene expression with RNA sequencing in CD4+ and CD8+ T cells, natural killer (NK) cells, and B cells, and chromatin accessibility by assay for transposase-accessible chromatin sequencing (ATAC-seq) in CD4+ T cells, in five genetically at risk children with islet autoantibodies who progressed to diabetes over a median of 3 years ("progressors") compared with five children matched for sex, age, and HLA-DR who had not progressed ("nonprogressors"). In progressors, differentially expressed genes (DEGs) were largely confined to CD4+ T cells and enriched for cytotoxicity-related genes/pathways. Several top-ranked DEGs were validated in a semi-independent cohort of 13 progressors and 11 nonprogressors. Flow cytometry confirmed that progression was associated with expansion of CD4+ cells with a cytotoxic phenotype. By ATAC-seq, progression was associated with reconfiguration of regulatory chromatin regions in CD4+ cells, some linked to differentially expressed cytotoxicity-related genes. Our findings suggest that cytotoxic CD4+ T cells play a role in promoting progression to type 1 diabetes.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Cromatina/química , Citotoxicidade Imunológica/genética , Diabetes Mellitus Tipo 1/imunologia , Progressão da Doença , Regulação da Expressão Gênica , Adolescente , Autoimunidade/genética , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/ultraestrutura , Linfócitos T CD8-Positivos/metabolismo , Criança , Pré-Escolar , Diabetes Mellitus Tipo 1/genética , Predisposição Genética para Doença , Humanos , Ilhotas Pancreáticas/imunologia , Células Matadoras Naturais/metabolismo , Análise de Sequência de RNA
5.
iScience ; 24(3): 102161, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33665577

RESUMO

The proximity pattern and radial distribution of chromosome territories within spherical nuclei are random and non-random, respectively. Whether this distribution pattern is conserved in the partitioned or lobed nuclei of polymorphonuclear cells is unclear. Here we use chromosome paint technology to examine the chromosome territories of all 46 chromosomes in hundreds of single human neutrophils - an abundant and famously polymorphonuclear immune cell. By comparing the distribution of chromosomes to randomly shuffled controls and validating with orthogonal chromosome conformation capture technology, we show for the first time that human chromosomes randomly distribute to neutrophil nuclear lobes, while maintaining a non-random radial distribution within these lobes. Furthermore, we demonstrate that chromosome length correlates with three-dimensional volume not only in neutrophils but other human immune cells. This work demonstrates that chromosomes are largely passive passengers during the neutrophil lobing process but are able to subsequently maintain their macro-level organization within lobes.

6.
Sci Rep ; 11(1): 528, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436846

RESUMO

Remodelling of chromatin architecture is known to regulate gene expression and has been well characterized in cell lineage development but less so in response to cell perturbation. Activation of T cells, which triggers extensive changes in transcriptional programs, serves as an instructive model to elucidate how changes in chromatin architecture orchestrate gene expression in response to cell perturbation. To characterize coordinate changes at different levels of chromatin architecture, we analyzed chromatin accessibility, chromosome conformation and gene expression in activated human T cells. T cell activation was characterized by widespread changes in chromatin accessibility and interactions that were shared between activated CD4+ and CD8+ T cells, and with the formation of active regulatory regions associated with transcription factors relevant to T cell biology. Chromatin interactions that increased and decreased were coupled, respectively, with up- and down-regulation of corresponding target genes. Furthermore, activation was associated with disruption of long-range chromatin interactions and with partitioning of topologically associating domains (TADs) and remodelling of their TAD boundaries. Newly formed/strengthened TAD boundaries were associated with higher nucleosome occupancy and lower accessibility, linking changes in lower and higher order chromatin architecture. T cell activation exemplifies coordinate multi-level remodelling of chromatin underlying gene transcription.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/química , Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Ativação Linfocitária/genética , Linfócitos T/imunologia , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Células Cultivadas , Humanos , Masculino , Nucleossomos/genética , Fatores de Transcrição , Transcrição Gênica/genética
7.
Blood ; 135(23): 2049-2058, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32305044

RESUMO

Loss of heterochromatin has been proposed as a universal mechanism of aging across different species and cell types. However, a comprehensive analysis of hematopoietic changes caused by heterochromatin loss is lacking. Moreover, there is conflict in the literature around the role of the major heterochromatic histone methyltransferase Suv39h1 in the aging process. Here, we use individual and dual deletion of Suv39h1 and Suv39h2 enzymes to examine the causal role of heterochromatin loss in hematopoietic cell development. Loss of neither Suv39h1 nor Suv39h2 individually had any effect on hematopoietic stem cell function or the development of mature lymphoid or myeloid lineages. However, deletion of both enzymes resulted in characteristic changes associated with aging such as reduced hematopoietic stem cell function, thymic involution and decreased lymphoid output with a skewing toward myeloid development, and increased memory T cells at the expense of naive T cells. These cellular changes were accompanied by molecular changes consistent with aging, including alterations in nuclear shape and increased nucleolar size. Together, our results indicate that the hematopoietic system has a remarkable tolerance for major disruptions in chromatin structure and reveal a role for Suv39h2 in depositing sufficient H3K9me3 to protect the entire hematopoietic system from changes associated with premature aging.


Assuntos
Senilidade Prematura/patologia , Diferenciação Celular , Hematopoese , Células-Tronco Hematopoéticas/patologia , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/fisiologia , Metiltransferases/fisiologia , Proteínas Repressoras/fisiologia , Idoso , Senilidade Prematura/metabolismo , Animais , Núcleo Celular/genética , Feminino , Células-Tronco Hematopoéticas/metabolismo , Heterocromatina/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia
8.
Proc Natl Acad Sci U S A ; 115(30): 7783-7788, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29997173

RESUMO

CD52, a glycophosphatidylinositol (GPI)-anchored glycoprotein, is released in a soluble form following T cell activation and binds to the Siglec (sialic acid-binding Ig-like lectin)-10 receptor on T cells to suppress their function. We show that binding of CD52-Fc to Siglec-10 and T cell suppression requires the damage-associated molecular pattern (DAMP) protein, high-mobility group box 1 (HMGB1). CD52-Fc bound specifically to the proinflammatory Box B domain of HMGB1, and this in turn promoted binding of the CD52 N-linked glycan, in α-2,3 sialic acid linkage with galactose, to Siglec-10. Suppression of T cell function was blocked by anti-HMGB1 antibody or the antiinflammatory Box A domain of HMGB1. CD52-Fc induced tyrosine phosphorylation of Siglec-10 and was recovered from T cells complexed with HMGB1 and Siglec-10 in association with SHP1 phosphatase and the T cell receptor (TCR). Thus, soluble CD52 exerts a concerted immunosuppressive effect by first sequestering HMGB1 to nullify its proinflammatory Box B, followed by binding to the inhibitory Siglec-10 receptor, triggering recruitment of SHP1 to the intracellular immunoreceptor tyrosine-based inhibitory motif of Siglec-10 and its interaction with the TCR. This mechanism may contribute to immune-inflammatory homeostasis in pathophysiologic states and underscores the potential of soluble CD52 as a therapeutic agent.


Assuntos
Antígeno CD52/imunologia , Proteína HMGB1/imunologia , Lectinas/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Motivos de Aminoácidos , Anticorpos/farmacologia , Feminino , Proteína HMGB1/antagonistas & inibidores , Humanos , Masculino , Domínios Proteicos , Proteína Tirosina Fosfatase não Receptora Tipo 6/imunologia
9.
PLoS Genet ; 14(6): e1007431, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29883495

RESUMO

It has been proposed that interactions between mammalian chromosomes, or transchromosomal interactions (also known as kissing chromosomes), regulate gene expression and cell fate determination. Here we aimed to identify novel transchromosomal interactions in immune cells by high-resolution genome-wide chromosome conformation capture. Although we readily identified stable interactions in cis, and also between centromeres and telomeres on different chromosomes, surprisingly we identified no gene regulatory transchromosomal interactions in either mouse or human cells, including previously described interactions. We suggest that advances in the chromosome conformation capture technique and the unbiased nature of this approach allow more reliable capture of interactions between chromosomes than previous methods. Overall our findings suggest that stable transchromosomal interactions that regulate gene expression are not present in mammalian immune cells and that lineage identity is governed by cis, not trans chromosomal interactions.


Assuntos
Cromossomos de Mamíferos/genética , Regulação da Expressão Gênica , Imunidade Celular/genética , Mamíferos/fisiologia , Animais , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromossomos de Mamíferos/química , Cromossomos de Mamíferos/metabolismo , DNA/química , DNA/genética , DNA/metabolismo , Citometria de Fluxo , Genoma , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Conformação de Ácido Nucleico , Estereoisomerismo
10.
Front Immunol ; 9: 879, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922282

RESUMO

How T cells differentiate in the neonate may critically determine the ability of the infant to cope with infections, respond to vaccines and avert allergies. Previously, we found that naïve cord blood CD4+ T cells differentiated toward an IL-4-expressing phenotype when activated in the presence of TGF-ß and monocyte-derived inflammatory cytokines, the latter are more highly secreted by infants who developed food allergy. Here, we show that in the absence of IL-2 or IL-12, naïve cord blood CD8+ T cells have a natural propensity to differentiate into IL-4-producing non-classic TC2 cells when they are activated alone, or in the presence of TGF-ß and/or inflammatory cytokines. Mechanistically, non-classic TC2 development is associated with decreased expression of IL-2 receptor alpha (CD25) and glycolysis, and increased fatty acid metabolism and caspase-dependent cell death. Consequently, the short chain fatty acid, sodium propionate (NaPo), enhanced IL-4 expression, but exogenous IL-2 or pan-caspase inhibition prevented IL-4 expression. In children with endoscopically and histologically confirmed non-inflammatory bowel disease and non-infectious pediatric idiopathic colitis, the presence of TGF-ß, NaPo, and IL-1ß or TNF-α promoted TC2 differentiation in vitro. In vivo, colonic mucosa of children with colitis had significantly increased expression of IL-4 in CD8+ T cells compared with controls. In addition, activated caspase-3 and IL-4 were co-expressed in CD8+ T cells in the colonic mucosa of children with colitis. Thus, in the context of colonic inflammation and limited IL-2 signaling, CD8+ T cells differentiate into non-classic TC2 that may contribute to the pathology of inflammatory/allergic diseases in children.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Colite Ulcerativa/imunologia , Interleucina-4/metabolismo , Biópsia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Caspase 3/metabolismo , Inibidores de Caspase/farmacologia , Criança , Pré-Escolar , Colite Ulcerativa/diagnóstico por imagem , Colite Ulcerativa/patologia , Colo/diagnóstico por imagem , Colo/imunologia , Colo/patologia , Colonoscopia , Ácidos Graxos/metabolismo , Feminino , Sangue Fetal/citologia , Sangue Fetal/imunologia , Humanos , Lactente , Interleucina-2/imunologia , Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Interleucina-4/imunologia , Ativação Linfocitária/imunologia , Masculino
11.
Pancreas ; 47(1): 25-34, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29135679

RESUMO

OBJECTIVES: The side population (SP) contains cells with stem cell/progenitor properties. Previously, we observed that the mouse pancreas SP expanded after pancreatic injury. We aimed to characterize the SP in human pancreas as a potential source of stem cells. METHODS: Human organ donor pancreata were fractionated into islets and exocrine tissue, enriched by tissue culture and dispersed into single cells. Cells were phenotyped by flow cytometry, and the SP was defined by efflux of fluorescent dye Hoechst 33342 visualized by ultraviolet excitation. Cells were flow sorted, and their colony-forming potential measured on feeder cells in culture. RESULTS: An SP was identified in islet and exocrine cells from human organ donors: 2 with type 1 diabetes, 3 with type 2 diabetes, and 28 without diabetes. Phenotyping revealed that exocrine SP cells had an epithelial origin, were enriched for carbohydrate antigen 19-9 ductal cells expressing stem cell markers CD133 and CD26, and had greater colony-forming potential than non-SP cells. The exocrine SP was increased in a young adult with type 1 diabetes and ongoing islet autoimmunity. CONCLUSIONS: The pancreatic exocrine SP is a potential reservoir of adult stem/progenitor cells, consistent with previous evidence that such cells are duct-derived and express CD133.


Assuntos
Células-Tronco Adultas/citologia , Separação Celular/métodos , Pâncreas/citologia , Células da Side Population/citologia , Antígeno AC133/metabolismo , Adolescente , Adulto , Células-Tronco Adultas/metabolismo , Idoso , Antígeno CA-19-9/metabolismo , Células Cultivadas , Feminino , Humanos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Masculino , Pessoa de Meia-Idade , Pâncreas Exócrino/citologia , Pâncreas Exócrino/metabolismo , Células da Side Population/metabolismo , Adulto Jovem
13.
J Autoimmun ; 68: 52-61, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26786119

RESUMO

MicroRNAs (miRNAs) regulate T cell development and function and the disruption of miRNAs in natural regulatory CD4(+) FOXP3(+) T cells (nTreg) leads to autoimmune disease in mice. To investigate miRNA expression in relation to autoimmune disease risk in humans we sequenced them in purified CD4(+) T cell subsets from individuals at high risk of type 1 diabetes (pre-T1D), as well as other healthy individuals. Differences in miRNA expression patterns were observed between specific T cell subsets and, within subsets, between pre-T1D and healthy individuals. Compared to healthy, naive CD4(+) T cells in pre-T1D displayed 32 differentially expressed miRNAs, potentially a template for altered miRNA expression in effector memory T cells in T1D. Naive nTreg in pre-T1D displayed two differentially expressed miRNAs, Let-7c and miR-15a. In contrast, nTreg activated in vivo displayed a large number of differentially expressed miRNAs, revealing a pro-inflammatory and FOXP3-repressive signature. Differential expression of specific miRNAs was also a signpost to altered T cell function. For example, in pre-T1D, increased expression of miR-26a in nTreg activated in vivo or in vitro was associated with decreased expression of its target, the histone methyltransferase EZH2. Chemical inhibition of EZH2 decreased the number of activated naïve nTreg and their expression of nTreg signature genes FOXP3 and TIGIT. Our findings demonstrate that miRNAs differentially expressed in CD4(+) T cell subsets are markers of risk and T cell dysfunction in T1D.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , MicroRNAs/genética , Biomarcadores , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Biblioteca Gênica , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ativação Linfocitária , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
14.
Sci Transl Med ; 8(321): 321ra8, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26764159

RESUMO

Food allergy is a major health burden in early childhood. Infants who develop food allergy display a proinflammatory immune profile in cord blood, but how this is related to interleukin-4 (IL-4)/T helper 2 (T(H)2)-type immunity characteristic of allergy is unknown. In a general population-derived birth cohort, we found that in infants who developed food allergy, cord blood displayed a higher monocyte to CD4(+) T cell ratio and a lower proportion of natural regulatory T cell (nT(reg)) in relation to duration of labor. CD14(+) monocytes of food-allergic infants secreted higher amounts of inflammatory cytokines (IL-1ß, IL-6, and tumor necrosis factor-α) in response to lipopolysaccharide. In the presence of the mucosal cytokine transforming growth factor-ß, these inflammatory cytokines suppressed IL-2 expression by CD4(+) T cells. In the absence of IL-2, inflammatory cytokines decreased the number of activated nT(reg) and diverted the differentiation of both nT(reg) and naïve CD4(+) T cells toward an IL-4-expressing nonclassical TH2 phenotype. These findings provide a mechanistic explanation for susceptibility to food allergy in infants and suggest anti-inflammatory approaches to its prevention.


Assuntos
Sangue Fetal/citologia , Hipersensibilidade Alimentar/imunologia , Imunidade Inata/efeitos dos fármacos , Mediadores da Inflamação/farmacologia , Interleucina-2/metabolismo , Monócitos/metabolismo , Células Th2/imunologia , Diferenciação Celular/efeitos dos fármacos , Hipersensibilidade Alimentar/patologia , Humanos , Lactente , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/metabolismo
15.
Diabetes Res Clin Pract ; 110(3): 291-300, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26515908

RESUMO

AIM: DPP-4/CD26 degrades the incretins GLP-1 and GIP. The localization of DPP-4 within the human pancreas is not well documented but is likely to be relevant for understanding incretin function. We aimed to define the cellular localization of DPP-4 in the human pancreas from cadaveric organ donors with and without diabetes. METHODS: Pancreas was snap-frozen and immunoreactive DPP-4 detected in cryosections using the APAAP technique. For co-localization studies, pancreas sections were double-stained for DPP-4 and proinsulin or glucagon and scanned by confocal microscopy. Pancreata were digested and cells in islets and in islet-depleted, duct-enriched digests analyzed for expression of DPP-4 and other markers by flow cytometry. RESULTS: DPP-4 was expressed by pancreatic duct and islet cells. In pancreata from donors without diabetes or with type 2 diabetes, DPP-4-positive cells in islets had the same location and morphology as glucagon-positive cells, and the expression of DPP-4 and glucagon overlapped. In donors with type 1 diabetes, the majority of residual cells in islets were DPP-4-positive. CONCLUSION: In the human pancreas, DPP-4 expression is localized to duct and alpha cells. This finding is consistent with the view that DPP-4 regulates exposure to incretins of duct cells directly and of beta cells indirectly in a paracrine manner.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Dipeptidil Peptidase 4/metabolismo , Células Secretoras de Glucagon/metabolismo , Ductos Pancreáticos/metabolismo , Adulto , Idoso , Feminino , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Imuno-Histoquímica , Incretinas/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Pessoa de Meia-Idade , Proinsulina/metabolismo , Adulto Jovem
16.
Blood ; 124(5): 737-49, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-24951427

RESUMO

Differentiation of naïve CD4(+) T cells into effector (Th1, Th2, and Th17) and induced regulatory (iTreg) T cells requires lineage-specifying transcription factors and epigenetic modifications that allow appropriate repression or activation of gene transcription. The epigenetic silencing of cytokine genes is associated with the repressive H3K27 trimethylation mark, mediated by the Ezh2 or Ezh1 methyltransferase components of the polycomb repressive complex 2 (PRC2). Here we show that silencing of the Ifng, Gata3, and Il10 loci in naïve CD4(+) T cells is dependent on Ezh2. Naïve CD4(+) T cells lacking Ezh2 were epigenetically primed for overproduction of IFN-γ in Th2 and iTreg and IL-10 in Th2 cells. In addition, deficiency of Ezh2 accelerated effector Th cell death via death receptor-mediated extrinsic and intrinsic apoptotic pathways, confirmed in vivo for Ezh2-null IFN-γ-producing CD4(+) and CD8(+) T cells responding to Listeria monocytogenes infection. These findings demonstrate the key role of PRC2/Ezh2 in differentiation and survival of peripheral T cells and reveal potential immunotherapeutic targets.


Assuntos
Apoptose/imunologia , Diferenciação Celular/imunologia , Inativação Gênica/imunologia , Complexo Repressor Polycomb 2/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Sobrevivência Celular/imunologia , Proteína Potenciadora do Homólogo 2 de Zeste , Feminino , Humanos , Interferon gama/imunologia , Interleucina-10/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Listeriose/patologia , Masculino , Camundongos , Linfócitos T Auxiliares-Indutores/citologia
17.
Blood ; 122(16): 2823-36, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23974203

RESUMO

Regulatory T cells (Treg) prevent the emergence of autoimmune disease. Prototypic natural Treg (nTreg) can be reliably identified by demethylation at the Forkhead-box P3 (FOXP3) locus. To explore the methylation landscape of nTreg, we analyzed genome-wide methylation in human naive nTreg (rTreg) and conventional naive CD4(+) T cells (Naive). We detected 2315 differentially methylated cytosine-guanosine dinucleotides (CpGs) between these 2 cell types, many of which clustered into 127 regions of differential methylation (RDMs). Activation changed the methylation status of 466 CpGs and 18 RDMs in Naive but did not alter DNA methylation in rTreg. Gene-set testing of the 127 RDMs showed that promoter methylation and gene expression were reciprocally related. RDMs were enriched for putative FOXP3-binding motifs. Moreover, CpGs within known FOXP3-binding regions in the genome were hypomethylated. In support of the view that methylation limits access of FOXP3 to its DNA targets, we showed that increased expression of the immune suppressive receptor T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT), which delineated Treg from activated effector T cells, was associated with hypomethylation and FOXP3 binding at the TIGIT locus. Differential methylation analysis provides insight into previously undefined human Treg signature genes and their mode of regulation.


Assuntos
Metilação de DNA , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Linfócitos T Reguladores/citologia , Motivos de Aminoácidos , Ilhas de CpG , Epigênese Genética , Fatores de Transcrição Forkhead/metabolismo , Genoma Humano , Humanos , Imunofenotipagem , Masculino , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína
18.
Curr Diab Rep ; 13(5): 616-23, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23888323

RESUMO

Insulin-dependent or type 1 diabetes (T1D) is a paradigm for prevention of autoimmune disease: Pancreatic ß-cell autoantigens are defined, at-risk individuals can be identified before the onset of symptoms, and autoimmune diabetes is preventable in rodent models. Intervention in asymptomatic individuals before or after the onset of subclinical islet autoimmunity places a premium on safety, a requirement met only by lifestyle-dietary approaches or autoantigen-based vaccination to induce protective immune tolerance. Insulin is the key driver of autoimmune ß-cell destruction in the nonobese diabetic (NOD) mouse model of T1D and is an early autoimmune target in children at risk for T1D. In the NOD mouse, mucosal administration of insulin induces regulatory T cells that protect against diabetes. The promise of autoantigen-specific vaccination in humans has yet to be realized, but recent trials of oral and nasal insulin vaccination in at-risk humans provide grounds for cautious optimism.


Assuntos
Autoantígenos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Vacinação , Animais , Glutamato Descarboxilase/imunologia , Humanos , Insulina/imunologia , Ensaios Clínicos Controlados Aleatórios como Assunto
19.
Int J Dev Biol ; 57(5): 391-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23873371

RESUMO

The homeobox gene Pdx1 is a key regulator of pancreas and foregut development. Loss of Pdx1 expression results in pancreas agenesis and impaired development of the gastro-duodenal domain including Brunner’s glands. We previously demonstrated a key role for Pdx1 in maintaining the integrity and function of insulin-secreting beta cells in the adult pancreas. In the present study, we aimed to determine if expression of Pdx1 is required to maintain the cellular identity of the gastro-duodenal domain in adult mice. Immunohistological studies were performed in a mouse model in which expression of Pdx1 was conditionally repressed with the doxycycline-responsive tetracycline transactivator system. Mice in which Pdx1 was chronically repressed developed hamartomas in the gastro-duodenal domain. These lesions appeared to arise from ectopic foci of anteriorized cells, consistent with a localised anterior homeotic shift. They emerge with the intercalation of tissue between the anteriorized and normal domains and appear strikingly similar to lesions in the colon of mice heterozygous for another Parahox gene, Cdx2. Continuing expression of Pdx1 into adult life is required to maintain regional cellular identity in the adult foregut, specifically at the gastro-duodenal boundary. Loss of Pdx1 expression leads to anterior transformation and intercalary regeneration of ectopic tissue. We propose a model in which the posterior dominance of classical Hox genes is mirrored by the Parahox genes, providing further evidence of the functional conservation of the Parahox genes. These findings may have implications for further understanding the molecular basis of gastro-duodenal metaplasia and gastro-intestinal transformations such as Barrett’s esophagus.


Assuntos
Anormalidades do Sistema Digestório/metabolismo , Trato Gastrointestinal/metabolismo , Hamartoma/metabolismo , Proteínas de Homeodomínio/metabolismo , Transativadores/metabolismo , Animais , Fator de Transcrição CDX2 , Anormalidades do Sistema Digestório/genética , Duodeno/citologia , Duodeno/metabolismo , Feminino , Mucosa Gástrica/metabolismo , Trato Gastrointestinal/citologia , Hamartoma/genética , Proteínas de Homeodomínio/genética , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Estômago/citologia , Fatores de Tempo , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
PLoS One ; 7(11): e48977, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23152835

RESUMO

Pancreas stem cells are a potential source of insulin-producing ß cells for the therapy of diabetes. In adult tissues the 'side population' (SP) of cells that effluxes the DNA binding dye Hoechst 33342 through ATP-binding cassette transporters has stem cell properties. We hypothesised therefore that the SP would expand in response to ß cell injury and give rise to functional ß cells. SP cells were flow sorted from dissociated pancreas cells of adult mice, analysed for phenotype and cultured with growth promoting and differentiation factors before analysis for hormone expression and glucose-stimulated insulin secretion. SP cell number and colony forming potential (CFP) increased significantly in models of type diabetes, and after partial pancreatectomy, in the absence of hyperglycaemia. SP cells, ∼1% of total pancreas cells at 1 week of age, were enriched >10-fold for CFP compared to non-SP cells. Freshly isolated SP cells contained no insulin protein or RNA but expressed the homeobox transcription factor Pdx1 required for pancreas development and ß cell function. Pdx1, along with surface expression of CD326 (Ep-Cam), was a marker of the colony forming and proliferation potential of SP cells. In serum-free medium with defined factors, SP cells proliferated and differentiated into islet hormone-expressing cells that secreted insulin in response to glucose. Insulin expression was maintained when tissue was transplanted within vascularised chambers into diabetic mice. SP cells in the adult pancreas expand in response to ß cell injury and are a source of ß cell progenitors with potential for the treatment of diabetes.


Assuntos
Células Secretoras de Insulina/citologia , Pâncreas/citologia , Células da Side Population/citologia , Células-Tronco/citologia , Transportadores de Cassetes de Ligação de ATP/metabolismo , Fatores Etários , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Proliferação de Células , Feminino , Citometria de Fluxo , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Pâncreas/metabolismo , Pâncreas/cirurgia , Células da Side Population/metabolismo , Células-Tronco/metabolismo , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA