Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(34): e2107023, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35025119

RESUMO

Ultrashort optical pulses are integral to probing various physical, chemical, and biological phenomena and feature in a whole host of applications, not least in data communications. Super- and subluminal pulse propagation and dispersion management (DM) are two of the greatest challenges in producing or counteracting modifications of ultrashort optical pulses when precise control over pulse characteristics is required. Progress in modern photonics toward integrated solutions and applications has intensified this need for greater control of ultrafast pulses in nanoscale dimensions. Metamaterials, with their unique ability to provide designed optical properties, offer a new avenue for temporal pulse engineering. Here an epsilon-near-zero metamaterial is employed, exhibiting strong nonlocal (spatial dispersion) effects, to temporally shape optical pulses. The authors experimentally demonstrate, over a wide bandwidth of tens of THz, the ability to switch from sub to superluminal and further to "backward" pulse propagation (±c/20) in the same metamaterial device by simply controlling the angle of illumination. Both the amplitude and phase of a 10 ps pulse can be controlled through DM in this subwavelength device. Shaping ultrashort optical pulses with metamaterials promises to be advantageous in laser physics, optical communications, imaging, and spectroscopy applications using both integrated and free-standing devices.

2.
Opt Express ; 29(8): 11562-11569, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33984933

RESUMO

We demonstrate, experimentally and theoretically, a new class of angle-insensitive band-pass optical filters that utilize anisotropy of plasmonic nanorod metamaterials, in both ε ≃ -1 and epsilon-near-infinity regimes, to minimize dependence of optical path on the incident angle. The operating wavelength and bandwidth of the filter can be engineered by controlling the geometry of the metamaterial. Experimental results are in agreement with full wave numerical and analytical solutions of the Maxwell's equations. Theoretical simulations show that performance of the systems can be further improved by replacing metallic mirrors with dielectric stacks.

3.
Nano Lett ; 20(3): 1536-1541, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32013449

RESUMO

Highly efficient information processing in the brain is based on processing and memory components called synapses, whose output is dependent on the history of the signals passed through them. Here, we have developed an artificial synapse with both electrical and optical memory effects using chemical transformations in plasmonic tunnel junctions. In an electronic implementation, the electrons tunneled into plasmonic nanorods under a low bias voltage are harvested to write information into the tunnel junctions via hot-electron-mediated chemical reactions with the environment. In an optical realization, the information can be written by an external light illumination to excite hot electrons in the plasmonic nanorods. The stored information is nonvolatile and can be read either electrically or optically by measuring the resistance or inelastic-tunneling-induced light emission, respectively. The described architecture provides a high density (∼1010 cm-2) of memristive optoelectronic devices which can be used as multilevel nonvolatile memory, logic units, or artificial synapses in future electronic, optoelectronic, and artificial neural networks.

4.
Acc Chem Res ; 52(11): 3018-3028, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31680511

RESUMO

Plasmonic nanostructures were initially developed for sensing and nanophotonic applications but, recently, have shown great promise in chemistry, optoelectronics, and nonlinear optics. While smooth plasmonic films, supporting surface plasmon polaritons, and individual nanostructures, featuring localized surface plasmons, are easy to fabricate and use, the assemblies of nanostructures in optical antennas and metamaterials provide many additional advantages related to the engineering of the mode structure (and thus, optical resonances in the given spectral range), field enhancement, and local density of optical states required to control electronic and photonic interactions. Focusing on two of the many applications of plasmonic metamaterials, in this Account, we review our work on the sensing and nanochemistry applications of metamaterials based on the assemblies of plasmonic nanorods under optical, as well as electronic interrogation. Sensors are widely employed in modern technology for the detection of events or changes in their local environment. Compared to their electronic counterparts, optical sensors offer a combination of high sensitivity, fast response, immunity to electromagnetic interference, and provide additional options for signal retrieval, such as optical intensity, spectrum, phase, and polarization. Owing to the ability to confine and enhance electromagnetic fields on subwavelength scales, plasmonics has been attracting increasing attention for the development of optical sensors with advantages including both nanometer-scale spatial resolution and single-molecule sensitivity. Inherent hot-electron generation in plasmonic nanostructures under illumination or during electron tunneling in the electrically biased nanostructures provides further opportunities for sensing and stimulation of chemical reactions, which would otherwise not be energetically possible. We first provide a brief introduction to a metamaterial sensing platform based on arrays of strongly coupled plasmonic nanorods. Several prototypical sensing examples based on this versatile metamaterial platform are presented. Record-high refractive index sensitivity of gold nanorod arrays in biosensing based on the functionalization of the nanorod surface for selective absorption arises because of the modification of the electromagnetic coupling between the nanorods in the array. The capabilities of nanorod metamaterials for ultrasound and hydrogen sensing were demonstrated by precision coating of the nanorods with functional materials to create core-shell nanostructures. The extension of this metamaterial platform to nanotube and nanocavity arrays, and metaparticles provides additional flexibility and removes restrictions on the illumination configurations for the optical interrogation. We then discuss a nanochemical platform based on the electrically driven metamaterials to stimulate and detect chemical reactions in the tunnel junctions constructed with the nanorods by exploiting elastic tunneling for the activation of chemical reactions via generated hot-electrons and inelastic tunneling for the excitation of plasmons facilitating optical monitoring of the process. This represents a new paradigm merging electronics, plasmonics, photonics and chemistry at the nanoscale, and creates opportunities for a variety of practical applications, such as hot-electron-driven nanoreactors and high-sensitivity sensors, as well as nanoscale light sources and modulators. With a combination of merits, such as the ability to simultaneously support both localized and propagating modes, nanoporous texture, rapid and facile functionalization, and low cost and scalability, plasmonic nanorod metamaterials provide an attractive and versatile platform for the development of optical sensors and nanochemical platforms using hot-electrons with high performance for applications in fundamental research and chemical and pharmaceutical industries.

5.
Nat Commun ; 10(1): 2967, 2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273210

RESUMO

While free electrons in metals respond to ultrafast excitation with refractive index changes on femtosecond time scales, typical relaxation mechanisms occur over several picoseconds, governed by electron-phonon energy exchange rates. Here, we propose tailoring these intrinsic rates by engineering a non-uniform electron temperature distribution through nanostructuring, thus, introducing an additional electron temperature relaxation channel. We experimentally demonstrate a sub-300 fs switching time due to the wavelength dependence of the induced hot electron distribution in the nanostructure. The speed of switching is determined by the rate of redistribution of the inhomogeneous electron temperature and not just the rate of heat exchange between electrons and phonons. This effect depends on both the spatial overlap between control and signal fields in the metamaterial and hot-electron diffusion effects. Thus, switching rates can be controlled in nanostructured systems by designing geometrical parameters and selecting wavelengths, which determine the control and signal mode distributions.

6.
Faraday Discuss ; 214(0): 387-397, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-30801594

RESUMO

Hot carrier generation by light in various semiconductors and metallic nanostructures is important for many photocatalytic and photochemical processes, including water and hydrogen splitting. Here, we report on investigations of hot electron generation and extraction from Pt decorated SiO2-Au nanoparticles using the degradation of methylene blue dye as a test-bed. Enhanced catalytic activity was found with an increase of Pt loading on the surface of the heterostructures. The small size of the Au nanoparticles (∼12 nm) decorating the silica nanoparticles reduces hot electron collisions and related thermalization processes, since charge carriers have short paths to the surface where reactions take place and where Pt is situated. The heterostructures exhibit a broad plasmonic resonance in the visible wavelength range from 500 to 700 nm and hot carrier generation predominately takes place under resonant excitation. Electron-microscopy characterization and numerical modelling have allowed the optimization of Pt coverage for hot-electron transfer, consisting of a thin Pt shell covering the Au nanoparticle with Pt nanoparticles additionally placed on top. This geometry provides an increased number of active sites for methylene blue degradation and promotes separation of charge carriers generated by plasmonic excitations in Au. Such SiO2-Au-Pt nanoparticles are attractive for hot-electron production due to the tunability of their plasmonic resonance and enhanced catalytic activity.

7.
Nanotechnology ; 30(5): 055301, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30521490

RESUMO

Metamaterials and metasurfaces provide unprecedented opportunities for designing light-matter interactions. Optical properties of hyperbolic metamaterials with meta-atoms based on plasmonic nanorods, important in nonlinear optics, sensing and spontaneous emission control, can be tuned by varying geometrical sizes and arrangement of the meta-atoms. At the same time the role of the shape of the meta-atoms forming the array has not been studied. We present the fabrication and optical characterization of metamaterials based on arrays of plasmonic nanocones closely packed at the subwavelength scale. The plasmonic mode structure of the individual nanocones and pronounced coupling effects between them provide multiple degrees of freedom to engineer both the field enhancement and the optical properties of the resulting metamaterials. The metamaterials are fabricated using a scalable manufacturing procedure, allowing mass-production at the centimeter scale. The ultra-sharp cone apex ([Formula: see text]2 nm) and the associated field enhancement provide an extremely high density of electromagnetic hot-spots (∼1010 cm-2). These properties of nanocone-based metamaterials are important for the development of gradient-index metamaterials and in numerous applications in fluorescence enhancement, surface enhanced Raman spectroscopy as well as hot-carrier plasmonics and photocatalysis.

8.
Nat Nanotechnol ; 13(2): 159-164, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29230044

RESUMO

Non-equilibrium hot carriers formed near the interfaces of semiconductors or metals play a crucial role in chemical catalysis and optoelectronic processes. In addition to optical illumination, an efficient way to generate hot carriers is by excitation with tunnelling electrons. Here, we show that the generation of hot electrons makes the nanoscale tunnel junctions highly reactive and facilitates strongly confined chemical reactions that can, in turn, modulate the tunnelling processes. We designed a device containing an array of electrically driven plasmonic nanorods with up to 1011 tunnel junctions per square centimetre, which demonstrates hot-electron activation of oxidation and reduction reactions in the junctions, induced by the presence of O2 and H2 molecules, respectively. The kinetics of the reactions can be monitored in situ following the radiative decay of tunnelling-induced surface plasmons. This electrically driven plasmonic nanorod metamaterial platform can be useful for the development of nanoscale chemical and optoelectronic devices based on electron tunnelling.

9.
Light Sci Appl ; 6(6): e16273, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30167260

RESUMO

Light-matter interactions can be strongly modified by the surrounding environment. Here, we report on the first experimental observation of molecular spontaneous emission inside a highly non-local metamaterial based on a plasmonic nanorod assembly. We show that the emission process is dominated not only by the topology of its local effective medium dispersion, but also by the non-local response of the composite, so that metamaterials with different geometric parameters but the same local effective medium properties exhibit different Purcell factors. A record-high enhancement of a decay rate is observed, in agreement with the developed quantitative description of the Purcell effect in a non-local medium. An engineered material non-locality introduces an additional degree of freedom into quantum electrodynamics, enabling new applications in quantum information processing, photochemistry, imaging and sensing with macroscopic composites.

10.
Laser Photon Rev ; 9(3): 345-353, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26693254

RESUMO

Hyperbolic metamaterials comprised of an array of plasmonic nanorods provide a unique platform for designing optical sensors and integrating nonlinear and active nanophotonic functionalities. In this work, the waveguiding properties and mode structure of planar anisotropic metamaterial waveguides are characterized experimentally and theoretically. While ordinary modes are the typical guided modes of the highly anisotropic waveguides, extraordinary modes, below the effective plasma frequency, exist in a hyperbolic metamaterial slab in the form of bulk plasmon-polaritons, in analogy to planar-cavity exciton-polaritons in semiconductors. They may have very low or negative group velocity with high effective refractive indices (up to 10) and have an unusual cut-off from the high-frequency side, providing deep-subwavelength (λ0/6-λ0/8 waveguide thickness) single-mode guiding. These properties, dictated by the hyperbolic anisotropy of the metamaterial, may be tuned by altering the geometrical parameters of the nanorod composite.

11.
Nat Commun ; 6: 7757, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26195182

RESUMO

Nonlinear optical materials comprise the foundation of modern photonics, offering functionalities ranging from ultrafast lasers to optical switching, harmonic and soliton generation. Optical nonlinearities are typically strong near the electronic resonances of a material and thus provide limited tuneability for practical use. Here we show that in plasmonic nanorod metamaterials, the Kerr-type nonlinearity is not limited by the nonlinear properties of the constituents. Compared with gold's nonlinearity, the measured nonlinear absorption and refraction demonstrate more than two orders of magnitude enhancement over a broad spectral range that can be engineered via geometrical parameters. Depending on the metamaterial's effective plasma frequency, either a focusing or defocusing nonlinearity is observed. The ability to obtain strong and fast optical nonlinearities in a given spectral range makes these metamaterials a flexible platform for the development of low-intensity nonlinear applications.

12.
Adv Mater ; 26(21): 3532-7, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24643991

RESUMO

Gold-core/palladium-shell metamaterials for hydrogen detection are presented. The more than 30% change in both the reflection and transmission from the metamaterial layer that is observed when the layer is exposed to 2% hydrogen mixture is clearly noticeable to the naked eye as a change in the brightness of light transmitted by the metamaterial. This sensor should make a contribution to the safety of processes involving hydrogen.

13.
Nanotechnology ; 21(10): 105303, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20160340

RESUMO

This paper describes the formation of mono-domain highly ordered nanoporous alumina on the scale of a 2 inch diameter silicon wafer by anodization of aluminium evaporated on a patterned SiO(2) mask on a silicon substrate. The position of the ordered pores correlates with holes in the SiO(2) mask, which guide the electric field during anodization and initiates pore nucleation. The technique is suitable for the production of ordered nanoporous alumina on a wafer scale and overcomes the time, cost and scale limitations of existing processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA