Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 6(4)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33411693

RESUMO

Glucagon regulates glucose and lipid metabolism and promotes weight loss. Thus, therapeutics stimulating glucagon receptor (GCGR) signaling are promising for obesity treatment; however, the underlying mechanism(s) have yet to be fully elucidated. We previously identified that hepatic GCGR signaling increases circulating fibroblast growth factor 21 (FGF21), a potent regulator of energy balance. We reported that mice deficient for liver Fgf21 are partially resistant to GCGR-mediated weight loss, implicating FGF21 as a regulator of glucagon's weight loss effects. FGF21 signaling requires an obligate coreceptor (ß-Klotho, KLB), with expression limited to adipose tissue, liver, pancreas, and brain. We hypothesized that the GCGR-FGF21 system mediates weight loss through a central mechanism. Mice deficient for neuronal Klb exhibited a partial reduction in body weight with chronic GCGR agonism (via IUB288) compared with controls, supporting a role for central FGF21 signaling in GCGR-mediated weight loss. Substantiating these results, mice with central KLB inhibition via a pharmacological KLB antagonist, 1153, also displayed partial weight loss. Central KLB, however, is dispensable for GCGR-mediated improvements in plasma cholesterol and liver triglycerides. Together, these data suggest GCGR agonism mediates part of its weight loss properties through central KLB and has implications for future treatments of obesity and metabolic syndrome.


Assuntos
Glucagon/metabolismo , Proteínas Klotho/metabolismo , Receptores de Glucagon/metabolismo , Transdução de Sinais , Redução de Peso , Animais , Peso Corporal , Ingestão de Alimentos , Fatores de Crescimento de Fibroblastos/genética , Expressão Gênica , Glucose/metabolismo , Homeostase , Proteínas Klotho/genética , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Peptídeos
2.
Obesity (Silver Spring) ; 28(12): 2347-2356, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33043637

RESUMO

OBJECTIVE: This study aimed to investigate both the long-term and short-term impacts of high-fat diets (HFD) or high-sucrose diets (HSD) on the normal diurnal pattern of cognitive function, protein expression, and the molecular clock in mice. METHODS: This study used both 6-month and 4-week feeding strategies by providing male C57BL/6J mice access to either a standard chow, HFD, or HSD. Spatial working memory and synaptic plasticity were assessed both day and night, and hippocampal tissue was measured for changes in NMDA and AMPA receptor subunits (GluN2B, GluA1), as well as molecular clock gene expression. RESULTS: HFD and HSD both disrupted normal day/night fluctuations in spatial working memory and synaptic plasticity. Mice fed HFD altered their food intake to consume more calories during the day. Both diets disrupted normal hippocampal clock gene expression, and HFD reduced GluN2B levels in hippocampal tissue. CONCLUSIONS: Taken together, these results suggest that both HFD and HSD induce a loss of day/night performance in spatial working memory and synaptic plasticity as well as trigger a cascade of changes that include disruption to the hippocampal molecular clock.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Memória de Curto Prazo/efeitos dos fármacos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Endocrinology ; 161(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31673703

RESUMO

Glucagon (GCG) is an essential regulator of glucose and lipid metabolism that also promotes weight loss. We have shown that glucagon-receptor (GCGR) signaling increases fatty acid oxidation (FAOx) in primary hepatocytes and reduces liver triglycerides in diet-induced obese (DIO) mice; however, the mechanisms underlying this aspect of GCG biology remains unclear. Investigation of hepatic GCGR targets elucidated a potent and previously unknown induction of leptin receptor (Lepr) expression. Liver leptin signaling is known to increase FAOx and decrease liver triglycerides, similar to glucagon action. Therefore, we hypothesized that glucagon increases hepatic LEPR, which is necessary for glucagon-mediated reversal of hepatic steatosis. Eight-week-old control and liver-specific LEPR-deficient mice (LeprΔliver) were placed on a high-fat diet for 12 weeks and then treated with a selective GCGR agonist (IUB288) for 14 days. Liver triglycerides and gene expression were assessed in liver tissue homogenates. Administration of IUB288 in both lean and DIO mice increased hepatic Lepr isoforms a-e in acute (4 hours) and chronic (72 hours,16 days) (P < 0.05) settings. LeprΔliver mice displayed increased hepatic triglycerides on a chow diet alone (P < 0.05), which persisted in a DIO state (P < 0.001), with no differences in body weight or composition. Surprisingly, chronic administration of IUB288 in DIO control and LeprΔliver mice reduced liver triglycerides regardless of genotype (P < 0.05). Together, these data suggest that GCGR activation induces hepatic Lepr expression and, although hepatic glucagon and leptin signaling have similar liver lipid targets, these appear to be 2 distinct pathways.


Assuntos
Fígado Gorduroso/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Peptídeos/farmacologia , Receptores de Glucagon/metabolismo , Receptores para Leptina/metabolismo , Animais , Área Sob a Curva , Dieta Hiperlipídica , Homeostase , Metabolismo dos Lipídeos/fisiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Obesidade/induzido quimicamente , Receptores de Glucagon/genética , Receptores para Leptina/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA