Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Anal Toxicol ; 44(9): 993-1003, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-32104892

RESUMO

Fentanyl analogs constitute a particularly dangerous group of new psychoactive compounds responsible for many deaths around the world. Little is known about their metabolism, and studies utilizing liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) analysis of hepatocyte incubations and/or authentic urine samples do not allow for determination of the exact metabolite structures, especially when it comes to hydroxylated metabolites. In this study, seven motifs (2-, 3-, 4- and ß-OH as well as 3,4-diOH, 4-OH-3-OMe and 3-OH-4-OMe) of fentanyl and five fentanyl analogs, acetylfentanyl, acrylfentanyl, cyclopropylfentanyl, isobutyrylfentanyl and 4F-isobutyrylfentanyl were synthesized. The reference standards were analyzed by LC-QTOF-MS, which enabled identification of the major metabolites formed in hepatocyte incubations of the studied fentanyls. By comparison with our previous data sets, major urinary metabolites could tentatively be identified. For all analogs, ß-OH, 4-OH and 4-OH-3-OMe were identified after hepatocyte incubation. ß-OH was the major hydroxylated metabolite for all studied fentanyls, except for acetylfentanyl where 4-OH was more abundant. However, the ratio 4-OH/ß-OH was higher in urine samples than in hepatocyte incubations for all studied fentanyls. Also, 3-OH-4-OMe was not detected in any hepatocyte samples, indicating a clear preference for the 4-OH-3-OMe, which was also found to be more abundant in urine compared to hepatocytes. The patterns appear to be consistent across all studied fentanyls and could serve as a starting point in the development of methods and synthesis of reference standards of novel fentanyl analogs where nothing is known about the metabolism.


Assuntos
Analgésicos Opioides/urina , Fentanila/análogos & derivados , Detecção do Abuso de Substâncias/métodos , Cromatografia Líquida , Fentanila/normas , Fentanila/urina , Hepatócitos , Humanos , Espectrometria de Massas , Padrões de Referência , Detecção do Abuso de Substâncias/normas
2.
NPJ Genom Med ; 12016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-28567303

RESUMO

The standard of care for first-tier clinical investigation of the etiology of congenital malformations and neurodevelopmental disorders is chromosome microarray analysis (CMA) for copy number variations (CNVs), often followed by gene(s)-specific sequencing searching for smaller insertion-deletions (indels) and single nucleotide variant (SNV) mutations. Whole genome sequencing (WGS) has the potential to capture all classes of genetic variation in one experiment; however, the diagnostic yield for mutation detection of WGS compared to CMA, and other tests, needs to be established. In a prospective study we utilized WGS and comprehensive medical annotation to assess 100 patients referred to a paediatric genetics service and compared the diagnostic yield versus standard genetic testing. WGS identified genetic variants meeting clinical diagnostic criteria in 34% of cases, representing a 4-fold increase in diagnostic rate over CMA (8%) (p-value = 1.42e-05) alone and >2-fold increase in CMA plus targeted gene sequencing (13%) (p-value = 0.0009). WGS identified all rare clinically significant CNVs that were detected by CMA. In 26 patients, WGS revealed indel and missense mutations presenting in a dominant (63%) or a recessive (37%) manner. We found four subjects with mutations in at least two genes associated with distinct genetic disorders, including two cases harboring a pathogenic CNV and SNV. When considering medically actionable secondary findings in addition to primary WGS findings, 38% of patients would benefit from genetic counseling. Clinical implementation of WGS as a primary test will provide a higher diagnostic yield than conventional genetic testing and potentially reduce the time required to reach a genetic diagnosis.

3.
J Child Neurol ; 30(5): 648-53, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24789515

RESUMO

Pyridoxine-dependent epilepsy is an autosomal recessively inherited disorder of lysine catabolism caused by mutations in the ALDH7A1 gene. We report 2 patients with normal neurocognitive outcome (full-scale IQ of 108 and 74) and their more than 10 years' treatment outcome on pyridoxine monotherapy. Both patients had specific borderline impairments in visual processing speed. More long-term treatment outcome reports will increase our knowledge about the natural history of the disease.


Assuntos
Aldeído Desidrogenase/genética , Epilepsia/tratamento farmacológico , Epilepsia/genética , Mutação , Piridoxina/uso terapêutico , Complexo Vitamínico B/uso terapêutico , Adolescente , Criança , Epilepsia/fisiopatologia , Epilepsia/psicologia , Humanos , Masculino , Condução Nervosa , Testes Neuropsicológicos , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA