Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 11(26): 6060-6074, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37345352

RESUMO

The research described here looks at the development of virus-like particles (VLPs) derived from bacteriophage HK97 as versatile scaffolds for bionanomaterials construction. Based on molecular models, the Prohead I HK97 VLP was engineered to allow attachment of small molecules to the interior by introducing a reactive cysteine into the genetic sequence of the HK97 GP5 protein that self assembles to form the VLP structure. In addition, methods for entrapping large protein macromolecules were evaluated and found to produce high encapsulation numbers of green fluorescent proteins (GFP) in the internal space of the HK97 VLP. A method for modular modification of the external surface was engineered by constructing a plasmid allowing the addition of peptide sequences to the C-terminus of the GP5 protein, which was validated by appending the sortase recognition peptide sequence, LPETG, to the C-terminus of GP5 and showing the attachment of a polyglycine-GFP to the HK97 VLP through sortase mediated ligation. To demonstrate the potential for advanced applications, an HK97 VLP covalently labeled on the interior surface with fluorescein and containing an externally displayed integrin binding peptide sequence (RGD) was evaluated and found to be preferentially localized at C2C12 cells relative to the HK97 VLP lacking the RGD peptide. Together, these results support the potential of the HK97 VLP as a versatile nanoparticle platform that can be modified internally and externally in a modular fashion for the purpose of programming the VLP for desired applications.


Assuntos
Biotecnologia , Peptídeos , Engenharia , Sequência de Aminoácidos , Proteínas de Fluorescência Verde/genética
2.
ACS Chem Biol ; 17(8): 2212-2220, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35925780

RESUMO

Modular fluorescent sensor motifs are needed to design fluorescent sensors for detecting various cellular processes and functional molecules. Here, we took advantage of the versatility of a new sensor motif to design a series of sensors called SPOTon. SPOTon sensors integrate the signal from either opioids, protein-protein interactions, or protease activities to generate persistent green fluorescence. We demonstrate that SPOTon can be engineered with temporal gating to allow detection of these cellular events during a user-defined time window, providing temporal information about cellular processes and functional molecule release. These SPOTon sensors all show a high signal-to-noise ratio, up to 38 for chemical gated opioid detection, 147 for chemical gated protein-protein interaction detection, and 85 for protease activity detection.


Assuntos
Analgésicos Opioides , Peptídeo Hidrolases , Corantes Fluorescentes/química , Peptídeo Hidrolases/metabolismo , Proteólise
3.
Biotechnol Bioeng ; 118(4): 1466-1475, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33331661

RESUMO

Epidermal growth factor receptor (EGFR) is a clinically validated target for a multitude of human cancers. The receptor is activated upon ligand binding through a critical dimerization step. Dimerization can be replicated in vitro by locally concentrating the receptor kinase domains on the surface of lipid-based vesicles. In this study we investigated the use of coiled coils to induce spontaneous receptor kinase domain dimerization in vitro to form non-membrane-bound artificial receptor mimics in solution. Two engineered forms of EGFR kinase domain fused to coiled coil complementary peptides were designed to self-associate upon mixing. Two fusion protein species (P3-EGFR and P4-EGFR) independently showed the same activity and polymerization profile known to exist with EGFR kinase domains. Upon mixing the two species, coiled coil heterodimers were formed that induced EGFR association to form dimers of the kinase domains. This was accompanied by 11.5-fold increase in the phosphorylation rate indicative of kinase domain activation equivalent to the levels achieved using vesicle localization and mimicking in vivo ligand-induced activation. This study presents a soluble tyrosine kinase receptor mimic capable of spontaneous in vitro activation that can facilitate functional and drug discovery studies for this clinically important receptor class.


Assuntos
Dimerização , Receptores ErbB , Engenharia de Proteínas , Animais , Receptores ErbB/biossíntese , Receptores ErbB/química , Receptores ErbB/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Células Sf9 , Spodoptera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA