Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Heliyon ; 10(9): e30426, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38720760

RESUMO

The brain is sensitive to oxidative stress, which can trigger microglial activation and neuroinflammation. Antioxidant therapies may provide neuroprotection against oxidative stress. In recent years antioxidant effects of probiotics and their possible mechanisms in oxidative stress-related models have been determined. In the current study, for the first time, we assessed the effects of Saccharomyces boulardii on oxidative stress provoked by lipopolysaccharide (LPS) in the rat brain. Four groups of animals were used, including the control, LPS, S. boulardii + LPS, and S. boulardii groups. All animals received either saline or S. boulardii (1010 CFU) by gavage for four weeks. Between days 14 and 22, all animals received either LPS (250 µg/kg) or saline by intraperitoneal (i.p.) injection. S. boulardii was able to inhibit lipid peroxidation and prevent the reduction of antioxidant levels, including glutathione and catalase in the model of oxidative stress induced by LPS in the rat hippocampus and cortex. Also, it increased the lowered ratio of glutathione/oxidized glutathione in both tissues. Serum levels of anti-inflammatory interleukin 10 (IL-10) and proinflammatory cytokines IL-6 and IL-8 increased and decreased, respectively. S. boulardii has potential antioxidant activities in oxidative stress-related model, possibly modulating gut microbiota, immune defense, and antioxidant enzyme activities that can be considered in preventing oxidative stress-related central nervous system (CNS) diseases.

2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 59-75, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589736

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAIDs) are an important class of anti-inflammatory drugs widely used for the treatment of musculoskeletal disorders, mild-to-moderate pain, and fever. This review aimed to explain the functional role and possible mechanisms of the antifungal effects of NSAIDs alone or in combination with antifungal drugs in vitro and in vivo. Several studies reported that NSAIDs such as aspirin, ibuprofen, diclofenac, indomethacin, ketorolac, celecoxib, flurbiprofen, and nimesulide had antifungal activities in vitro, either fungistatic or fungicidal, against different strains of Candida, Aspergillus, Cryptococcus, Microsporum, and Trichophyton species. These drugs inhibited biofilm adhesion and development, and yeast-to-hypha conversion which may be related to a prostaglandin E2 (PGE2)/PGEx-dependent mechanism. Modulating PGE2 levels by NSAIDs during fungal infection can be introduced as a possible mechanism to overcome. In addition, some important mechanisms of the antifungal activities of NSAIDs and their new derivatives on fungi and host immune responses are summarized. Overall, we believe that using NSAIDs along with classical antifungal drugs has the potential to be investigated as a novel therapeutic strategy in clinical studies. Furthermore, combination therapy can help manage resistant strains, increase the efficacy of antifungal drugs, and reduce toxicity.


Assuntos
Antifúngicos , Micoses , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Dinoprostona , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Aspirina/farmacologia , Micoses/tratamento farmacológico
3.
Biomed Pharmacother ; 163: 114763, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37105078

RESUMO

Gut microbiota can interact with the immune system through its metabolites. Short-chain fatty acids (SCFAs), as one of the most abundant metabolites of the resident gut microbiota play an important role in this crosstalk. SCFAs (acetate, propionate, and butyrate) regulate nearly every type of immune cell in the gut's immune cell repertoire regarding their development and function. SCFAs work through several pathways to impose protection towards colonic health and against local or systemic inflammation. Additionally, SCFAs play a role in the regulation of immune or non-immune pathways that can slow the development of autoimmunity either systematically or in situ. The present study aims to summarize the current knowledge on the immunomodulatory roles of SCFAs and the association between the SCFAs and autoimmune disorders such as celiac disease (CD), inflammatory bowel disease (IBD), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE), type 1 diabetes (T1D) and other immune-mediated diseases, uncovering a brand-new therapeutic possibility to prevent or treat autoimmunity.


Assuntos
Doenças Autoimunes , Ácidos Graxos Voláteis , Humanos , Ácidos Graxos Voláteis/metabolismo , Doenças Autoimunes/tratamento farmacológico , Butiratos , Propionatos , Acetatos
4.
ACS Chem Neurosci ; 13(22): 3180-3187, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36318666

RESUMO

Recent studies have indicated that dysfunction of gut microbiota, living microorganisms of the digestive tract, plays a role in the pathogenesis of neurodegenerative disorders, indicating the valuable impact of probiotics as a potential preventive or therapeutic strategy. Saccharomyces boulardii is a yeast probiotic with beneficial effects on various disorders, ranging from inflammatory gastrointestinal diseases to brain and behavioral disorders. Herein, we examined the effect of S. boulardii on memory impairment induced by lipopolysaccharide (LPS) in Wistar rats. Four groups of rats were used in this study (N = 10): (1) control [Cnt], (2) LPS, (3) LPS + S. boulardii [LPS + S], and (4) S. boulardii [S]. Animals were orally administered S. boulardii (250 mg/rat) or saline by gavage for 4 weeks. From the 14th day of the study, animals were administered intraperitoneal LPS (0.25 mg/kg/day) or saline for 9 days. We assessed memory impairment, neuroinflammation, and amyloid-ß deposition. S. boulardii ameliorated LPS-induced memory dysfunction. We observed that S. boulardii significantly reduced the elevated levels of serum interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α, as well as hippocampal levels of NLRP3 and caspase-1 in the LPS model. Moreover, S. boulardii alleviated amyloid-ß deposition in the rat hippocampus. Collectively, our findings indicated that S. boulardii could inhibit memory impairment, neuroinflammation, and amyloid-ß accumulation induced by LPS, possibly by modifying the gut microbiota.


Assuntos
Probióticos , Saccharomyces boulardii , Ratos , Animais , Lipopolissacarídeos/toxicidade , Saccharomyces cerevisiae , Ratos Wistar , Probióticos/farmacologia , Probióticos/uso terapêutico
5.
Neuropeptides ; 95: 102262, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35709657

RESUMO

Interferon beta (IFNß) is a cytokine with anti-apoptotic and anti-inflammatory properties, and its beneficial effects on Alzheimer's disease (AD) have been recently shown. The alterations in cerebral glucose uptake are closely linked to memory deficit and AD progression. The current study was designed to determine if IFNß can improve recognition memory and brain glucose uptake in a rat model of AD. The lentiviruses expressing mutant human amyloid precursor protein were injected bilaterally to the rat hippocampus. From day 23 after virus injection, rats were intranasally treated with recombinant IFNß protein (68,000 IU/rat) every other day until day 50. Recognition memory performance was evaluated by novel object recognition test on days 46-49. The 18F-2- fluoro-deoxy-d-glucose positron emission tomography (18F-FDG-PET) was used to determine changes in brain glucose metabolism on day 50. The expression of the PI3K/Akt pathway components, neurotrophins and mitochondrial biogenesis factors were also measured by qPCR in the hippocampus. Our results showed that IFNß treatment improves recognition memory performance in parallel with increased glucose uptake and neuronal survival in the hippocampus of the AD rats. The neuroprotective effect of IFNß could be attributed, at least partly, to activation of PI3K-Akt-mTOR signaling pathway, increased expression of NGF, and mitochondrial biogenesis. Taken together, our findings suggest the therapeutic potential of IFNß for AD.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Hipocampo , Humanos , Interferon beta/metabolismo , Interferon beta/farmacologia , Interferon beta/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Biogênese de Organelas , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
6.
Front Pharmacol ; 13: 831963, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273505

RESUMO

Potassium ion (K+) channels are pore-forming transmembrane proteins that control the transport of K+ ions. Medicinal plants are widely used as complementary therapies for several disorders. Studies have shown that the modulation of K+ channels is most likely involved in various pharmacological effects of medicinal plants. This review aimed to evaluate the modulatory effects of medicinal plants and their active constituents on K+ channels under pathological conditions. This systematic review was prepared according to the Preferred Reporting Items for the Systematic Reviews and Meta-analyses (PRISMA) 2020 guideline. Four databases, including PubMed, Web of Science, embase, and Scopus, were searched. We identified 687 studies from these databases, from which we selected 13 in vivo studies for the review by using the Population, Intervention, Comparison, Outcomes, Study (PICOS) tool. The results of the 13 selected studies showed a modulatory effect of medicinal plants or their active constituents on ATP-sensitive potassium channels (KATP), and small (SKCa) and large (BKCa) conductance calcium-activated K+ channels in several pathological conditions such as nociception, brain ischemia, seizure, diabetes, gastric ulcer, myocardial ischemia-reperfusion, and hypertension via possible involvement of the nitric oxide/cyclic GMP pathway and protein kinase. K+ channels should be considered as significant therapeutic milestones in the treatment of several diseases. We believe that understanding the mechanism behind the interaction of medicinal plants with K+ channels can facilitate drug development for the treatment of various K+ channel-related disorders.

7.
Neurosci Lett ; 778: 136600, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35358641

RESUMO

Anxiety is the brain's response to dangerous or stressful situations. Exposure to stressors can cause gut microbiota dysbiosis and activate the hypothalamic-pituitary-adrenal (HPA) axis, leading to the secretion of glucocorticoids associated with anxiety. Recent studies have reported that probiotics can attenuate anxiety-like behaviors by modulation of the gut microbiome composition. The present study aimed to investigate the effects of Saccharomyces boulardii (Sb) administration on anxiety-like behaviors induced by lipopolysaccharide (LPS) in rats. The animals were randomly divided into four groups (Control, LPS, Sb + LPS, and Sb). All animals were orally treated with saline or S. boulardii (1010 CFU/ml/rat) for 28 days. They were also injected with saline or LPS (250 µg/kg/day) intraperitoneally from day 14 until day 22. Anxiety-like behaviors were assessed using the elevated plus-maze and open-field tests. Besides, the serum levels of cortisol, corticosterone, serotonin, and brain-derived neurotrophic factor (BDNF) were measured. The results revealed that S. boulardii could attenuate LPS-induced anxiety-like behaviors. The findings also showed that oral administration of S. boulardii significantly attenuated the elevated levels of cortisol and corticosterone in the LPS-induced model. Moreover, S. boulardii alleviated the decremental effect of LPS on the serum serotonin and BDNF levels. According to the present findings, S. boulardii can prevent LPS-induced anxiety-like behaviors, probably through modulation of the HPA axis and the gut microbiome.


Assuntos
Saccharomyces boulardii , Animais , Ansiedade/induzido quimicamente , Ansiedade/prevenção & controle , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corticosterona/farmacologia , Hidrocortisona , Sistema Hipotálamo-Hipofisário/metabolismo , Lipopolissacarídeos/farmacologia , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Saccharomyces boulardii/metabolismo , Serotonina/farmacologia
8.
J Cell Mol Med ; 25(11): 5138-5149, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33939261

RESUMO

Multipotent human bone marrow-derived mesenchymal stem cells (hMSCs) are promising candidates for bone and cartilage regeneration. Toll-like receptor 4 (TLR4) is expressed by hMSCs and is a receptor for both exogenous and endogenous danger signals. TLRs have been shown to possess functional differences based on the species (human or mouse) they are isolated from therefore, the effects of knockdown of TLR4 were evaluated in humans during the differentiation of MSCs into bone, fat and chondrocyte cells in vitro. We investigated the expression profile of TLR4 during the differentiation of hMSCs into three different lineages on days 7, 14 and 21 and assessed the differentiation potential of the cells in the presence of lipopolysaccharide (LPS, as an exogenous agonist) and fibronectin fragment III-1c (FnIII-1c, as an endogenous agonist). TLR4 expression increased following the induction of hMSC differentiation into all three lineages. Alkaline phosphatase activity revealed that FnIII-1c accelerated calcium deposition on day 7, whereas LPS increased calcium deposition on day 14. Chondrogenesis increased in the presence of LPS; however, FnIII-1c acted as a reducer in the late stage. TLR4 silencing led to decreased osteogenesis and increased adipogenesis. Furthermore, Wnt5a expression was inversely related to chondrogenesis during the late stage of differentiation. We suggest that understanding the functionality of TLR4 (in the presence of pathogen or stress signal) during the differentiation of hMSCs into three lineages would be useful for MSC-based treatments.


Assuntos
Adipogenia , Diferenciação Celular , Condrogênese , Células-Tronco Mesenquimais/citologia , Osteogênese , Receptor 4 Toll-Like/metabolismo , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Receptor 4 Toll-Like/genética
9.
Phytother Res ; 35(6): 3013-3031, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33373071

RESUMO

In times of health crisis, including the current COVID-19 pandemic, the potential benefit of botanical drugs and supplements emerges as a focus of attention, although controversial efficacy claims are rightly a concern. Phytotherapy has an established role in everyday self-care and health care, but, since botanical preparations contain many chemical constituents rather than single compounds, challenges arise in demonstrating efficacy and safety. However, there is ample traditional, empirical, and clinical evidence that botanicals can offer some protection and alleviation of disease symptoms as well as promoting general well-being. Newly emerging viral infections, specifically COVID-19, represent a unique challenge in their novelty and absence of established antiviral treatment or immunization. We discuss here the roles and limitations of phytotherapy in helping to prevent and address viral infections, especially regarding their effects on immune response. Botanicals with a documented immunomodulatory, immunostimulatory, and antiinflammatory effects include adaptogens, Boswellia spp., Curcuma longa, Echinacea spp., Glycyrrhiza spp., medicinal fungi, Pelargonium sidoides, salicylate-yielding herbs, and Sambucus spp. We further provide a clinical perspective on applications and safety of these herbs in prevention, onset, progression, and convalescence from respiratory viral infections.


Assuntos
Tratamento Farmacológico da COVID-19 , Preparações de Plantas/farmacologia , Plantas Medicinais/química , Suplementos Nutricionais , Humanos , Imunidade/efeitos dos fármacos , Fitoterapia/métodos , SARS-CoV-2/efeitos dos fármacos
10.
Drug Dev Res ; 82(4): 474-493, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33251593

RESUMO

Coronavirus disease 2019 (COVID-19) is a viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The disease was first reported in December 2019 in Wuhan, China, but now more than 200 countries have been affected and the coronavirus pandemic is still ongoing. The severity of COVID-19 symptoms can range from mild to severe. FDA approved remdesivir as a treatment of COVID-19 so far. Various clinical trials are underway to find an effective method to treat patients with COVID-19. This review aimed at summarizing 219 registered clinical trials in the ClinicalTrials.gov database with possible mechanisms, and novel findings of them, and other recent publications related to COVID-19. According to our analyses, various treatment approaches and drugs are being investigated to find an effective drug to cure COVID-19 and among all strategies, three important mechanisms are suggested to be important against COVID-19 including antiviral, anti-inflammatory, and immunomodulatory properties. Our review can help future studies get on the way to finding an effective drug for COVID-19 treatment by providing ideas for similar researches.


Assuntos
Tratamento Farmacológico da COVID-19 , Ensaios Clínicos como Assunto , Anti-Inflamatórios/uso terapêutico , Antivirais/uso terapêutico , Humanos , Fatores Imunológicos/uso terapêutico , Sistema de Registros
11.
Hum Genomics ; 14(1): 43, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33234152

RESUMO

BACKGROUND: Adult bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stem cells that can differentiate into three lineages. They are suitable sources for cell-based therapy and regenerative medicine applications. This study aims to evaluate the hub genes and key pathways of differentially expressed genes (DEGs) related to osteogenesis by bioinformatics analysis in three different days. The DEGs were derived from the three different days compared with day 0. RESULTS: Gene expression profiles of GSE37558 were obtained from the Gene Expression Omnibus (GEO) database. A total of 4076 DEGs were acquired on days 8, 12, and 25. Gene ontology (GO) enrichment analysis showed that the non-canonical Wnt signaling pathway and lipopolysaccharide (LPS)-mediated signaling pathway were commonly upregulated DEGs for all 3 days. KEGG pathway analysis indicated that the PI3K-Akt and focal adhesion were also commonly upregulated DEGs for all 3 days. Ten hub genes were identified by CytoHubba on days 8, 12, and 25. Then, we focused on the association of these hub genes with the Wnt pathways that had been enriched from the protein-protein interaction (PPI) by the Cytoscape plugin MCODE. CONCLUSIONS: These findings suggested further insights into the roles of the PI3K/AKT and Wnt pathways and their association with osteogenesis. In addition, the stem cell microenvironment via growth factors, extracellular matrix (ECM), IGF1, IGF2, LPS, and Wnt most likely affect osteogenesis by PI3K/AKT.


Assuntos
Diferenciação Celular/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Osteogênese/genética , Transdução de Sinais/genética , Células Cultivadas , Biologia Computacional/métodos , Ontologia Genética , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Mapas de Interação de Proteínas/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Food Sci Nutr ; 8(10): 5215-5227, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33133525

RESUMO

In late December 2019, the outbreak of respiratory illness emerged in Wuhan, China, and spreads worldwide. World Health Organization (WHO) named this disease severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused by a new member of beta coronaviruses. Several medications are prescribed to patients, and some clinical trials are underway. Scientists are trying to find a specific drug against this virus. In this review, we summarize the pathogenesis, clinical features, and current treatments of coronavirus disease 2019 (COVID-19). Then, we describe the possible therapeutic effects of curcumin and its molecular mechanism against coronavirus-19. Curcumin, as an active constituent of Curcuma longa (turmeric), has been studied in several experimental and clinical trial studies. Curcumin has some useful clinical effects such as antiviral, antinociceptive, anti-inflammatory, antipyretic, and antifatigue effects that could be effective to manage the symptoms of the infected patient with COVID-19. It has several molecular mechanisms including antioxidant, antiapoptotic, and antifibrotic properties with inhibitory effects on Toll-like receptors, NF-κB, inflammatory cytokines and chemokines, and bradykinin. Scientific evidence suggests that curcumin could have a potential role to treat COVID-19. Thus, the use of curcumin in the clinical trial, as a new treatment option, should be considered.

13.
Food Sci Nutr ; 8(10): ii, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33133578

RESUMO

The cover image is based on the Review Curcumin (a constituent of turmeric): New treatment option against COVID-19 by Fatemeh Babaei et al., https://doi.org/10.1002/fsn3.1858.

14.
Food Sci Nutr ; 8(6): 2569-2580, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32566174

RESUMO

Vitexin is an apigenin flavone glycoside found in food and medicinal plants. It has a variety of pharmacological effects, including antioxidant, anti-inflammatory, anticancer, antinociceptive, and neuroprotective effects. This review study summarizes all the protective effects of vitexin as an antioxidant against reactive oxygen species, lipid peroxidation, and other oxidative damages in a variety of oxidative stress-related diseases, including seizure, memory impairment, cerebral ischemia, neurotoxicity, myocardial and respiratory injury, and metabolic dysfunction, with possible molecular and cellular mechanisms. This review describes any activation or inhibition of the signaling pathways that depend on the antioxidant activity of vitexin. More basic research is needed on the antioxidative effects of vitexin in vivo, and carrying out clinical trials for the treatment of oxidative stress-related diseases is also recommended.

15.
Iran J Basic Med Sci ; 23(3): 390-395, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32440327

RESUMO

OBJECTIVES: Rutin is a flavonoid with potent antioxidant property, which exhibited cytoprotective effects in several models of neuronal injury. This work aimed to examine whether rutin can protect neurons against oxidative DNA damage caused by serum/glucose deprivation (SGD) as an in vitro model of neurodegeneration and ischemia. MATERIALS AND METHODS: The PC12 cells were cultured for 2 hr in normal culture medium containing different concentrations of rutin or α-tocopherol (positive control) and then further incubated for 12 hr in SGD condition. Then, cell viability, DNA fragmentation, lipid peroxidation, generation of reactive oxygen species (ROS), and the expression of proteins involved in apoptosis were determined. RESULTS: The SGD condition significantly decreased viability of the cells, which was accompanied by a significant rise in the generation of ROS and lipid peroxidation. Rutin enhanced the viability of PC12 cells in SGD condition and reduced the production of ROS and lipid peroxidation. In addition, rutin decreased DNA damage and inhibited apoptotic cell death by decreasing the levels of proapoptotic proteins (Bax, caspase-3, caspase-9) and increasing the level of anti-apoptotic protein Bcl-2. CONCLUSION: This study demonstrated that rutin inhibits oxidative DNA damage and neuronal death induced by nutrients deprivation condition. Further studies may warrant the use of rutin as an appropriate neuroprotective agent for ischemic attacks and other neurodegenerative disorders.

16.
Int J Rheum Dis ; 22(10): 1857-1862, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31482684

RESUMO

AIM: Rheumatoid arthritis (RA) is a systemic inflammatory disease. In recent years, new drugs with novel targets have been developed to increase the efficacy of drugs in the treatment of RA. Curcumin has shown potent anti-inflammatory effects and is considered an anti-tumor necrosis factor. The present study was conducted to determine the effect of curcumin nanomicelle on the clinical symptoms of patients with RA. METHODS: This randomized, double-blind, controlled trial selected 65 eligible RA patients and randomly divided them into a curcumin nanomicelle group (n = 30) and a placebo group (n = 35). Curcumin nanomicelle (40 mg) and placebo capsules were administrated to the RA patients 3 times a day for 12 weeks. The Disease Activity Score of 28 joints (DAS-28) and erythrocyte sedimentation rate (ESR) were measured at baseline and after 12 weeks. RESULTS: The DAS-28, tender joint count (TJC) and swollen joint count (SJC) at baseline and the end of the study were not significant between the curcumin nanomicelle and placebo groups. After the intervention, the within-group DAS-28, TJC and SJC in the curcumin nanomicelle and placebo groups reduced significantly compared to the baseline. The difference in changes between the two groups was not significant. Nonetheless, this change was greater in the case group than in the placebo group. No significant changes were observed in terms of ESR between the two groups of RA patients. CONCLUSION: Adding curcumin nanomicelle to the RA patients' medication led to some positive changes in the DAS-28, IJC and SJC, although not significantly.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Curcumina/administração & dosagem , Nanopartículas , Anti-Inflamatórios não Esteroides/administração & dosagem , Artrite Reumatoide/sangue , Sedimentação Sanguínea , Proteína C-Reativa/metabolismo , Relação Dose-Resposta a Droga , Método Duplo-Cego , Esquema de Medicação , Feminino , Seguimentos , Humanos , Masculino , Micelas , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento
17.
Int Microbiol ; 22(3): 317-323, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30810993

RESUMO

In recent years, the beneficial impact of targeted gut microbiota manipulation in various neurological disorders has become more evident. Therefore, probiotics have been considered as a promising approach to modulate brain gene expression and neuronal pathways even in some neurodegenerative diseases. The purpose of this study was to determine the effect of probiotic biotherapy with combination of Lactobacillus helveticus R0052 and Bifidobacterium longum R0175 on the expression levels of proteins critical to neuronal apoptosis in hippocampus of lipopolysaccharide (LPS)-exposed rats. Four groups of animals (Control, LPS, Probiotic + LPS, and Probiotic) were treated with maltodextrin (placebo) or probiotic (109 CFU/ml/rat) for 2 weeks by gavage. On the 15th day, a single intraperitoneal dose of saline or LPS (1 mg/kg) was injected and 4 h later, protein assessment was performed by western blotting in hippocampal tissues. LPS significantly increased the Bax, Bax/Bcl-2 ratio, and cleaved caspase-3 expression along with decreased the Bcl-2 and procaspase-3 protein levels. However, probiotic pretreatment (L. helveticus R0052 + B. longum R0175) significantly downregulated the Bax and Bax/Bcl-2 ratio accompanied with upregulated Bcl-2 expression. Prophylactic treatment with these bacteria also attenuated LPS-induced caspase-3 activation by remarkably increasing the expression of procaspase-3 while reducing the level of cleaved caspase-3 in target tissues. Our data indicate that probiotic formulation (L. helveticus R0052 + B. longum R0175) alleviated hippocampal apoptosis induced by LPS in rats via the gut-brain axis and suggest that this probiotic could play a beneficial role in some neurodegenerative conditions.


Assuntos
Apoptose , Bifidobacterium longum/crescimento & desenvolvimento , Hipocampo/patologia , Lactobacillus helveticus/crescimento & desenvolvimento , Lipopolissacarídeos/toxicidade , Probióticos/administração & dosagem , Animais , Western Blotting , Caspase 3/análise , Hipocampo/efeitos dos fármacos , Placebos/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2/análise , Ratos , Proteína X Associada a bcl-2/análise
18.
J Am Coll Nutr ; 38(3): 209-217, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30307792

RESUMO

OBJECTIVE: The role of gut microbiota in the pathogenesis of several neurodegenerative disorders, including Alzheimer's disease (AD), via the gut-brain axis has recently been demonstrated; hence, modification of the intestinal microbiota composition by probiotic biotherapy could be a therapeutic target for these conditions. The aim of this study was to assess the effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) on inflammatory and memory processes in lipopolysaccharide (LPS)-induced rats, one of the animal models used in peripherally induced neuroinflammation and neurodegeneration. METHODS: Rats were randomly divided into four groups (Control, LPS, Probiotic + LPS, and Probiotic). All experimental groups were orally administrated maltodextrin (placebo) or probiotic (109 CFU/ml/rat) for 14 consecutive days and then were injected with saline or LPS (1 mg/kg, intraperitoneally [i.p.], single dose) 20 hours later. Memory retention ability and systemic and neuroinflammatory markers were assessed 4 hours after the injections. RESULTS: Systemic exposure to LPS resulted in significant elevation of both the circulating and hippocampal levels of proinflammatory cytokines, which decreased remarkably following probiotic pretreatment. Oral bacteriotherapy with a combination of L. helveticus R0052 and B. longum R0175 also attenuated the decremental effect of LPS on memory through brain-derived neurotrophic factor (BDNF) expression at the molecular level; however, this effect was not significant in the passive avoidance test at the behavioral level. CONCLUSIONS: These results suggest that the management of gut microbiota with this probiotic formulation could be a promising intervention to improve neuroinflammation-associated disorders such as AD.


Assuntos
Bifidobacterium longum , Inflamação/induzido quimicamente , Lactobacillus helveticus , Lipopolissacarídeos/toxicidade , Probióticos/uso terapêutico , Actinas/genética , Actinas/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citocinas/genética , Citocinas/metabolismo , Microbioma Gastrointestinal , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inflamação/prevenção & controle , Masculino , Polissacarídeos , Distribuição Aleatória , Ratos , Ratos Wistar , Regulação para Cima
19.
J Food Sci ; 83(9): 2280-2287, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30103275

RESUMO

Quercetin (3,3',4',5,7-pentahydroxyflavone) is found in vegetables and fruits. It is one of the major flavonoids that is part of human diets. Quercetin has several pharmacological effects in the nervous system as a neuroprotective agent. In this review, we summarize the research on quercetin and its role in memory in both animals and humans. Articles were chosen from the Scopus, PubMed, and Web of Science databases. In this review, we describe and summarize the importance of quercetin's presence in the body, particularly in the brain; its kinetics, including its absorption, metabolism, distribution, and excretion; its behavioral effects; and some of the possible mechanisms of action of quercetin on memory in different animal models. Several important pathways that may be involved in the processes of learning and memory, long-term potentiation, and cognition may be impaired during neurological diseases or other medical conditions. As dietary quercetin is important, provision of its best formulation for delivery to the brain as a nutraceutical and in clinical translational research for the prevention or treatment of Alzheimer's disease and other types of dementia is necessary.


Assuntos
Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Dieta , Memória/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Quercetina/farmacologia , Animais , Encéfalo/metabolismo , Demência/tratamento farmacológico , Humanos
20.
Arch Immunol Ther Exp (Warsz) ; 66(5): 399-406, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29704020

RESUMO

Mycobacterium tuberculosis (Mtb) survives and proliferates within the main cells of the innate immune system, macrophages. The goal of our study was to investigate the immunostimulatory effects of 13-cis retinoic acid (RA) and chicoric acid (CA) in human U937 macrophages against H37Ra Mtb infection by evaluating its potential role in the cell surface expression of HLA-DR, CD14 molecules as well as nitric oxide (NO) production and prevention of the Mtb growth within macrophages. In this study, we investigated the effects of 13-cis RA and CA on Mtb-infected macrophages using flowcytometry and Griess methods, respectively. Moreover, inhibitory effect of 13-cis RA and CA on Mtb growth within macrophages were assessed using colony-forming unit. 13-Cis RA and CA enhanced the cell surface expression of HLA-DR and CD14 molecules on U937 macrophages and prevented the growth of Mtb within macrophages. In addition, 13-cis RA and CA, have increased NO generation compared to untreated control macrophages, significantly (p < 0.001). Both drugs have a significant inhibitory effect on Mtb growth but CA at the highest concentration was more potent than 13-cis RA (p < 0.05). The results of our study showed that infected U937 macrophages treated with 13-cis RA and CA represented significant increases in NO production, CD14 and HLA-DR expression and also prevents intracellular survival of Mtb. Therefore, 13-cis RA and CA may have a significant therapeutic approach in the control of Mtb infection.


Assuntos
Ácidos Cafeicos/farmacologia , Isotretinoína/farmacologia , Macrófagos/efeitos dos fármacos , Mycobacterium tuberculosis/fisiologia , Succinatos/farmacologia , Tuberculose/tratamento farmacológico , Contagem de Colônia Microbiana , Antígenos HLA-DR/metabolismo , Humanos , Imunização , Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/imunologia , Óxido Nítrico/metabolismo , Células U937 , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA