Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612613

RESUMO

The clinical severity of multiple sclerosis (MS), an autoimmune disorder of the central nervous system, is thought to be determined by environmental and genetic factors that have not yet been identified. In a recent genome-wide association study (GWAS), a single nucleotide polymorphism (SNP), rs10191329, has been associated with MS severity in two large independent cohorts of patients. Different approaches were followed by the authors to prioritize the genes that are transcriptionally regulated by such an SNP. It was concluded that the identified SNP regulates a group of proximal genes involved in brain resilience and cognitive abilities rather than immunity. Here, by conducting an alternative strategy for gene prioritization, we reached the opposite conclusion. According to our re-analysis, the main target of rs10191329 is N-Acetylglucosamine Kinase (NAGK), a metabolic gene recently shown to exert major immune functions via the regulation of the nucleotide-binding oligomerization domain-containing protein 2 (NOD2) pathway. To gain more insights into the immunometabolic functions of NAGK, we analyzed the currently known list of NAGK protein partners. We observed that NAGK integrates a dense network of human proteins that are involved in glucose metabolism and are highly expressed by classical monocytes. Our findings hold potentially major implications for the understanding of MS pathophysiology.


Assuntos
Doenças Autoimunes , Esclerose Múltipla , Humanos , Esclerose Múltipla/genética , Estudo de Associação Genômica Ampla , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Acetilglucosamina
2.
Dev Genes Evol ; 233(2): 123-135, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37552321

RESUMO

Domestication transforms once wild animals into tamed animals that can be then exploited by humans. The process entails modifications in the body, cognition, and behavior that are essentially driven by differences in gene expression patterns. Although genetic and epigenetic mechanisms were shown to underlie such differences, less is known about the role exerted by trans-regulatory molecules, notably transcription factors (TFs) in domestication. In this paper, we conducted extensive in silico analyses aimed to clarify the TF landscape of mammal domestication. We first searched the literature, so as to establish a large list of genes selected with domestication in mammals. From this list, we selected genes experimentally demonstrated to exhibit TF functions. We also considered TFs displaying a statistically significant number of targets among the entire list of (domestication) selected genes. This workflow allowed us to identify 5 candidate TFs (SOX2, KLF4, MITF, NR3C1, NR3C2) that were further assessed in terms of biochemical and functional properties. We found that such TFs-of-interest related to mammal domestication are all significantly involved in the development of the brain and the craniofacial region, as well as the immune response and lipid metabolism. A ranking strategy, essentially based on a survey of protein-protein interactions datasets, allowed us to identify SOX2 as the main candidate TF involved in domestication-associated evolutionary changes. These findings should help to clarify the molecular mechanics of domestication and are of interest for future studies aimed to understand the behavioral and cognitive changes associated to domestication.


Assuntos
Domesticação , Fatores de Transcrição , Animais , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Encéfalo/metabolismo , Mamíferos/genética , Genômica
3.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675111

RESUMO

In MS patients with a progressive form of the disease, the slow deterioration of neurological functions is thought to result from a combination of neuronal cell death, axonal damages and synaptic dysfunctions [...].


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/metabolismo , Axônios/metabolismo , Morte Celular
4.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499320

RESUMO

In a substantial share of patients suffering from multiple sclerosis (MS), neurological functions slowly deteriorate despite a lack of radiological activity. Such a silent progression, observed in either relapsing-remitting or progressive forms of MS, is driven by mechanisms that appear to be independent from plaque activity. In this context, we previously reported that, in the spinal cord of MS patients, periplaques cover large surfaces of partial demyelination characterized notably by a transforming growth factor beta (TGF-beta) molecular signature and a decreased expression of the oligodendrocyte gene NDRG1 (N-Myc downstream regulated 1). In the present work, we re-assessed a previously published RNA expression dataset in which brain periplaques were originally used as internal controls. When comparing the mRNA profiles obtained from brain periplaques with those derived from control normal white matter samples, we found that, irrespective of plaque activity, brain periplaques exhibited a TGF-beta molecular signature, an increased expression of TGFB2 (transforming growth factor beta 2) and a decreased expression of the oligodendrocyte genes NDRG1 (N-Myc downstream regulated 1) and MAG (myelin-associated glycoprotein). From these data obtained at the mRNA level, a survey of the human proteome allowed predicting a protein-protein interaction network linking TGFB2 to the down-regulation of both NDRG1 and MAG in brain periplaques. To further elucidate the role of NDRG1 in periplaque-associated partial demyelination, we then extracted the interaction network linking NDRG1 to proteins detected in human central myelin sheaths. We observed that such a network was highly significantly enriched in RNA-binding proteins that notably included several HNRNPs (heterogeneous nuclear ribonucleoproteins) involved in the post-transcriptional regulation of MAG. We conclude that both brain and spinal cord periplaques host a chronic process of tissue remodeling, during which oligodendrocyte myelinating functions are altered. Our findings further suggest that TGFB2 may fuel such a process. Overall, the present work provides additional evidence that periplaque-associated partial demyelination may drive the silent progression observed in a subset of MS patients.


Assuntos
Esclerose Múltipla , Fator de Crescimento Transformador beta , Humanos , Encéfalo/metabolismo , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Recidiva Local de Neoplasia/metabolismo , Placa Amiloide/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
5.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638785

RESUMO

For a yet unknown reason, a substantial share of patients suffering from COVID-19 develop long-lasting neuropsychiatric symptoms ranging from cognitive deficits to mood disorders and/or an extreme fatigue. We previously reported that in non-neural cells, angiotensin-1 converting enzyme 2 (ACE2), the gene coding for the SARS-CoV2 host receptor, harbors tight co-expression links with dopa-decarboxylase (DDC), an enzyme involved in the metabolism of dopamine. Here, we mined and integrated data from distinct human expression atlases and found that, among a wide range of tissues and cells, enterocytes of the small intestine express the highest expression levels of ACE2, DDC and several key genes supporting the metabolism of neurotransmitters. Based on these results, we performed co-expression analyses on a recently published set of RNA-seq data obtained from SARS-CoV2-infected human intestinal organoids. We observed that in SARS-CoV2-infected enterocytes, ACE2 co-regulates not only with DDC but also with a specific group of genes involved in (i) the dopamine/trace amines metabolic pathway, (ii) the absorption of microbiota-derived L-DOPA and (iii) the absorption of neutral amino acids serving as precursors to neurotransmitters. We conclude that in patients with long COVID, a chronic infection and inflammation of small intestine enterocytes might be indirectly responsible for prolonged brain alterations.


Assuntos
Encéfalo/patologia , COVID-19/complicações , Regulação da Expressão Gênica , Intestino Delgado/patologia , Enzima de Conversão de Angiotensina 2/genética , Descarboxilases de Aminoácido-L-Aromático/genética , Encéfalo/metabolismo , COVID-19/genética , COVID-19/patologia , Células Cultivadas , Enterócitos/metabolismo , Enterócitos/patologia , Humanos , Intestino Delgado/metabolismo , SARS-CoV-2/isolamento & purificação , Síndrome de COVID-19 Pós-Aguda
7.
Sci Rep ; 10(1): 20023, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208773

RESUMO

Glial cells are early sensors of neuronal injury and can store lipids in lipid droplets under oxidative stress conditions. Here, we investigated the functions of the RNA-binding protein, SPEN/SHARP, in the context of Parkinson's disease (PD). Using a data-mining approach, we found that SPEN/SHARP is one of many astrocyte-expressed genes that are significantly differentially expressed in the substantia nigra of PD patients compared with control subjects. Interestingly, the differentially expressed genes are enriched in lipid metabolism-associated genes. In a Drosophila model of PD, we observed that flies carrying a loss-of-function allele of the ortholog split-ends (spen) or with glial cell-specific, but not neuronal-specific, spen knockdown were more sensitive to paraquat intoxication, indicating a protective role for Spen in glial cells. We also found that Spen is a positive regulator of Notch signaling in adult Drosophila glial cells. Moreover, Spen was required to limit abnormal accumulation of lipid droplets in glial cells in a manner independent of its regulation of Notch signaling. Taken together, our results demonstrate that Spen regulates lipid metabolism and storage in glial cells and contributes to glial cell-mediated neuroprotection.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Gotículas Lipídicas/química , Neuroglia/citologia , Paraquat/toxicidade , Doença de Parkinson/prevenção & controle , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Herbicidas/toxicidade , Proteínas de Homeodomínio/genética , Masculino , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteínas de Ligação a RNA/genética
8.
Int J Mol Sci ; 21(18)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971882

RESUMO

Severe burn injuries remain a major health problem due to high rates of mortality, residual morbidity, and/or aesthetic damages. To find new therapies aimed at promoting a harmonious healing of skin burns, it is important to develop models which take into account the unique properties of the human skin. Based on previously described models of burn injury performed on human skin explants, we hypothesized that maintaining explants under constant tension forces would allow to more closely reproduce the pathophysiological processes of skin remodeling. We thus. Here, we set up and characterized an improved model of deep second-degree burn injury on ex vivo cultured human skin explants at air-liquid interface and maintained under conditions of constant tension forces. A spontaneous re-epithelialization of the lesion was observed 8 to 9 days post burn and was found to rely on the proliferation of basal keratinocytes at the wound edges. Collagen VII at the dermo-epidermal junction reformed along with the progression of re-epithelializatio and a synthesis of procollagen III was observed in the dermis at the wound site. These findings indicate that our model is suitable for the assessment of clinically-relevant therapies aimed at modulating the kinetics of re-epithelialization and/or the activation of fibroblasts following skin burn injuries. In this regard, we evaluated the use of a thermoreversible poloxamer hydrogel as a vehicle for topically-testable therapeutic molecules. Our data showed that, although useful for drug formulation, the p407/p188 poloxamer hydrogel induces a delay of skin re-epithelialization in humans skin explants submitted to experimental burn injury.


Assuntos
Queimaduras/metabolismo , Fibroblastos/metabolismo , Queratinócitos/metabolismo , Modelos Biológicos , Reepitelização , Pele/metabolismo , Queimaduras/patologia , Fibroblastos/patologia , Humanos , Queratinócitos/patologia , Pele/patologia , Técnicas de Cultura de Tecidos
9.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629886

RESUMO

Although sulfur-rich thermal waters have ancestrally been used in the context of dermatological conditions, a global mapping of the molecular effects exerted by H2S on human keratinocytes is still lacking. To fill this knowledge gap, we subjected cultured human keratinocytes to distinct amounts of the non-gaseous hydrogen sulfur donor NaHS. We first checked that H2S accumulated in the cytoplasm of keratinocytes under our experimental conditions andused a combination of proteomics, genomics and biochemical approaches to unravel functionally relevant H2S targets in human keratinocytes. We found that the identified targets fall into two main categories: (i) the oxidative stress response molecules superoxide dismutase 2 (SOD2), NAD(P)H quinone dehydrogenase 1 (NQO1) and culin 3 (CUL3) and (ii) the chemokines interleukin-8 (IL-8) and CXCL2. Interestingly, NaHS also stimulated the caspase-1 inflammasome pathway, leading to increased secretion of the pro-inflammatory molecule interleukin-18 (IL-18). Interestingly, the secretion of interleukin-1 beta (IL-1ß) was only modestly impacted by NaHS exposure despite a significant accumulation of IL-1ß pro-form. Finally, we observed that NaHS significantly hampered the growth of human keratinocyte progenitors and stem cells cultured under clonogenic conditions or as epidermal cell sheets. We conclude that H2S exerts specific molecular effects on normal human keratinocytes.


Assuntos
Sulfeto de Hidrogênio/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Culina/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Inflamassomos , Inflamação/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Superóxido Dismutase/metabolismo
11.
Int J Mol Sci ; 21(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033173

RESUMO

The role exerted by Aquaporin 4 (AQP4) as a regulator of astrocyte immune functions has been poorly explored. A recent report demonstrates that under neuroinflammatory conditions, the expression of Aqp4 on murine astrocytes is mandatory for the effective control of acute inflammation in the central nervous system. Such an immunomodulatory function appears to be mediated by a promotion of the transforming growth factor beta 1 (Tgfb1) pathway. Here, these results are discussed in the context of neuromyelitis optica (NMO) and multiple sclerosis (MS) progressive forms. It is proposed that NMO and progressive MS might rely on opposite molecular mechanisms involving, in NMO, an acutely-defective AQP4/TGFB1 pathway and, in progressive MS, a chronically-stimulated AQP4/TGFB1 pathway. Data supporting the involvement of angiotensin II as a molecular link between AQP4 and TGFB1 are also reviewed.


Assuntos
Aquaporina 4/metabolismo , Astrócitos/metabolismo , Esclerose Múltipla/metabolismo , Neuromielite Óptica/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Angiotensina II/metabolismo , Animais , Astrócitos/patologia , Progressão da Doença , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Esclerose Múltipla/patologia , Neuromielite Óptica/patologia
12.
Front Immunol ; 10: 2704, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824497

RESUMO

There is circumstantial evidence that, under neurodegenerative conditions, peptides deriving from aggregated or misfolded specific proteins elicit adaptive immune responses. On another hand, several genes involved in familial forms of neurodegenerative diseases exert key innate immune functions. However, whether or not such observations are causally linked remains unknown. To start addressing this issue, we followed a systems biology strategy based on the mining of large proteomics and immunopeptidomics databases. First, we retrieved the expression patterns of common neurodegeneration-associated proteins in two professional antigen-presenting cells, namely B lymphocytes and dendritic cells. Surprisingly, we found that under physiological conditions, numerous neurodegeneration-associated proteins are abundantly expressed by human B lymphocytes. A survey of the human proteome allowed us to map a unique protein-protein interaction network linking common neurodegeneration-associated proteins and their first shell interactors in human B lymphocytes. Interestingly, network connectivity analysis identified two major hubs that both relate with inflammation and autophagy, namely TRAF6 (TNF Receptor Associated Factor 6) and SQSTM1 (Sequestosome-1). Moreover, the mapped network in B lymphocytes comprised two additional hub proteins involved in both inflammation and autoimmunity: HSPA8 (Heat Shock Protein Family A Member 8 also known as HSC70) and HSP90AA1 (Heat Shock Protein 90 Alpha Family Class A Member 1). Based on these results, we then explored the Immune Epitope Database "IEDB-AR" and actually found that a large share of neurodegeneration-associated proteins were previously reported to provide endogenous MHC class II-binding peptides in human B lymphocytes. Of note, peptides deriving from amyloid beta A4 protein, sequestosome-1 or profilin-1 were reported to bind multiple allele-specific MHC class II molecules. In contrast, peptides deriving from microtubule-associated protein tau, presenilin 2 and serine/threonine-protein kinase TBK1 were exclusively reported to bind MHC molecules encoded by the HLA-DRB1 1501 allele, a recently-identified susceptibility gene for late onset Alzheimer's disease. Finally, we observed that the whole list of proteins reported to provide endogenous MHC class II-binding peptides in human B lymphocytes is specifically enriched in neurodegeneration-associated proteins. Overall, our work indicates that immunization against neurodegeneration-associated proteins might be a physiological process which is shaped, at least in part, by B lymphocytes.


Assuntos
Autofagia/imunologia , Linfócitos B/imunologia , Inflamação/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Doenças Neurodegenerativas/imunologia , Proteína Sequestossoma-1/imunologia , Humanos , Biologia de Sistemas
13.
Int J Mol Sci ; 20(23)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779094

RESUMO

In multiple sclerosis (MS) patients with a progressive form of the disease, spinal cord (SC) functions slowly deteriorate beyond age 40. We previously showed that in the SC of these patients, large areas of incomplete demyelination extend distance away from plaque borders and are characterized by a unique progliotic TGFB1 (Transforming Growth Factor Beta 1) genomic signature. Here, we attempted to determine whether region- and age-specific physiological parameters could promote the progression of SC periplaques in MS patients beyond age 40. An analysis of transcriptomics databases showed that, under physiological conditions, a set of 10 homeobox (HOX) genes are highly significantly overexpressed in the human SC as compared to distinct brain regions. Among these HOX genes, a survey of the human proteome showed that only HOXA5 encodes a protein which interacts with a member of the TGF-beta signaling pathway, namely SMAD1 (SMAD family member 1). Moreover, HOXA5 was previously found to promote the TGF-beta pathway. Interestingly, SMAD1 is also a protein partner of the androgen receptor (AR) and an unsupervised analysis of gene ontology terms indicates that the AR pathway antagonizes the TGF-beta/SMAD pathway. Retrieval of promoter analysis data further confirmed that AR negatively regulates the transcription of several members of the TGF-beta/SMAD pathway. On this basis, we propose that in progressive MS patients, the physiological SC overexpression of HOXA5 combined with the age-dependent decline in AR ligands may favor the slow progression of TGFB1-mediated gliosis. Potential therapeutic implications are discussed.


Assuntos
Envelhecimento/metabolismo , Gliose/genética , Proteínas de Homeodomínio/genética , Esclerose Múltipla/genética , Medula Espinal/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima , Fatores Etários , Idoso , Encéfalo/metabolismo , Mineração de Dados , Bases de Dados Genéticas , Progressão da Doença , Feminino , Perfilação da Expressão Gênica/métodos , Gliose/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Ligantes , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/metabolismo , Proteômica/métodos , Receptores Androgênicos/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Proteína Smad1/metabolismo
14.
Int J Mol Sci ; 20(20)2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618832

RESUMO

There is increasing evidence that sex hormones, aging, and the occurrence of spinal cord (SC) tissue alterations exert combined effects on the development and outcome of multiple sclerosis (MS) progressive forms [...].


Assuntos
Esclerose Múltipla Crônica Progressiva/etiologia , Esclerose Múltipla Crônica Progressiva/metabolismo , Medula Espinal/metabolismo , Fatores Etários , Suscetibilidade a Doenças , Feminino , Humanos , Masculino , Esclerose Múltipla Crônica Progressiva/patologia , Fatores Sexuais , Medula Espinal/patologia
15.
Front Genet ; 10: 321, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031802

RESUMO

Social behavior and neuronal connectivity in rodents have been shown to be shaped by the prototypical T lymphocyte-derived pro-inflammatory cytokine Interferon-gamma (IFNγ). It has also been demonstrated that STAT1 (Signal Transducer And Activator Of Transcription 1), a transcription factor (TF) crucially involved in the IFNγ pathway, binds consensus sequences that, in humans, are located with a high frequency in the LTRs (Long Terminal Repeats) of the MER41 family of primate-specific HERVs (Human Endogenous Retroviruses). However, the putative role of an IFNγ/STAT1/MER41 pathway in human cognition and/or behavior is still poorly documented. Here, we present evidence that the promoter regions of intellectual disability-associated genes are uniquely enriched in LTR sequences of the MER41 HERVs. This observation is specific to MER41 among more than 130 HERVs examined. Moreover, we have not found such a significant enrichment in the promoter regions of genes that associate with autism spectrum disorder (ASD) or schizophrenia. Interestingly, ID-associated genes exhibit promoter-localized MER41 LTRs that harbor TF binding sites (TFBSs) for not only STAT1 but also other immune TFs such as, in particular, NFKB1 (Nuclear Factor Kappa B Subunit 1) and STAT3 (Signal Transducer And Activator Of Transcription 3). Moreover, IL-6 (Interleukin 6) rather than IFNγ, is identified as the main candidate cytokine regulating such an immune/MER41/cognition pathway. Of note, differences between humans and chimpanzees are observed regarding the insertion sites of MER41 LTRs in the promoter regions of ID-associated genes. Finally, a survey of the human proteome has allowed us to map a protein-protein network which links the identified immune/MER41/cognition pathway to FOXP2 (Forkhead Box P2), a key TF involved in the emergence of human speech. Our work suggests that together with the evolution of immune genes, the stepped self-domestication of MER41 in the genomes of primates could have contributed to cognitive evolution. We further propose that non-inherited forms of ID might result from the untimely or quantitatively inappropriate expression of immune signals, notably IL-6, that putatively regulate cognition-associated genes via promoter-localized MER41 LTRs.

16.
Cell Transplant ; 27(2): 264-274, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29637812

RESUMO

Total bilateral limbal stem cell deficiency leading to loss of corneal clarity, potential vision loss, pain, photophobia, and keratoplasty failure cannot be treated by autologous limbal transplantation, and allogeneic limbal transplantation requires subsequent immunosuppressive treatment. Cultured autologous oral mucosal epithelial cells have been shown to be safe and effective alternatives. These cells can be transplanted on supports or without support after detachment from the culture dishes. Dispase, known for epidermal sheet detachment, is reported as not usable for oral mucosa. The objective was to find an optimized detachment method providing a sufficiently resistant and adhesive cultured oral mucosal epithelium (COME), which can be grafted without sutures. Enzymatic treatments (dispase or collagenase at different concentrations) were compared to enzyme-free mechanical detachment. Histological immunofluorescence (IF) and Western blotting (WB) were used to examine the impact on adhesion markers (laminin-332, ß1-integrin, and type VII collagen) and junctional markers (E-cadherin, P-cadherin). Finally, the COME ability to adhere to the cornea and produce a differentiated epithelium 15 d after grafting onto an ex vivo porcine stroma model were investigated by histology, IF, and transmission electron microscopy. Collagenase at 0.5 mg/mL and dispase at 5 mg/mL were selected for comparative study on adhesive expression marker by IF and WB showed that levels of basement membrane proteins and cell-cell and cell-matrix junction proteins were not significantly different between the 3 detachment methods. Collagenase 0.5 mg/mL was selected for the next step validation because of the better reproducibility, 100% success (vs. 33% with dispase 5 mg/mL). Grafted onto porcine de-epithelialized corneal stroma, collagenase 0.5 mg/mL detached COME were found to adhere, stratify, and continue to ensure renewal of the epithelium. For COME, collagenase 0.5 mg/mL enzymatic detachment was selected and validated on its resistance and adhesive marker expression as well as their anchorage onto our new ex vivo de-epithelialized stroma model.


Assuntos
Membrana Basal/citologia , Limbo da Córnea/patologia , Mucosa Bucal/citologia , Células-Tronco/citologia , Animais , Membrana Basal/ultraestrutura , Células Cultivadas , Doenças da Córnea/terapia , Humanos , Microscopia Eletrônica de Transmissão , Mucosa Bucal/ultraestrutura , Transplante de Células-Tronco/métodos , Células-Tronco/ultraestrutura , Suínos
17.
Mol Cell Proteomics ; 17(6): 1126-1143, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29531019

RESUMO

High grade gliomas are the most common brain tumors in adult. These tumors are characterized by a high infiltration in microglial cells and macrophages. The immunosuppressive tumor environment is known to orient immune cells toward a pro-tumoral and anti-inflammatory phenotype. Therefore, the current challenge for cancer therapy is to find a way to reorient macrophages toward an antitumoral phenotype. Previously, we demonstrated that macrophages secreted antitumoral factors when they were invalidated for the proprotein converstase 1/3 (PC1/3) and treated with LPS. However, achieving an activation of macrophages via LPS/TLR4/Myd88-dependent pathway appears yet unfeasible in cancer patients. On the contrary, the antitumor drug Paclitaxel is also known to activate the TLR4 MyD88-dependent signaling pathway and mimics LPS action. Therefore, we evaluated if PC1/3 knock-down (KD) macrophages could be activated by Paclitaxel and efficient against glioma. We report here that such a treatment of PC1/3 KD macrophages drove to the overexpression of proteins mainly involved in cytoskeleton rearrangement. In support of this finding, we found that these cells exhibited a Ca2+ increase after Paclitaxel treatment. This is indicative of a possible depolymerization of microtubules and may therefore reflect an activation of inflammatory pathways in macrophages. In such a way, we found that PC1/3 KD macrophages displayed a repression of the anti-inflammatory pathway STAT3 and secreted more pro-inflammatory cytokines. Extracellular vesicles isolated from these PC1/3 KD cells inhibited glioma growth. Finally, the supernatant collected from the coculture between glioma cells and PC1/3 KD macrophages contained more antitumoral factors. These findings unravel the potential value of a new therapeutic strategy combining Paclitaxel and PC1/3 inhibition to switch macrophages toward an antitumoral immunophenotype.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Encefálicas/terapia , Glioma/terapia , Paclitaxel/farmacologia , Pró-Proteína Convertase 1/genética , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Citocinas/metabolismo , Glioma/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteômica , Ratos
18.
Front Neurosci ; 11: 582, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29123465

RESUMO

In the last decades, increasingly robust experimental approaches have formally demonstrated that autoimmunity is a physiological process involved in a large range of functions including cognition. On this basis, the recently enunciated "brain superautoantigens" theory proposes that autoimmunity has been a driving force of cognitive evolution. It is notably suggested that the immune and nervous systems have somehow co-evolved and exerted a mutual selection pressure benefiting to both systems. In this two-way process, the evolutionary-determined emergence of neurons expressing specific immunogenic antigens (brain superautoantigens) has exerted a selection pressure on immune genes shaping the T-cell repertoire. Such a selection pressure on immune genes has translated into the emergence of a finely tuned autoimmune T-cell repertoire that promotes cognition. In another hand, the evolutionary-determined emergence of brain-autoreactive T-cells has exerted a selection pressure on neural genes coding for brain superautoantigens. Such a selection pressure has translated into the emergence of a neural repertoire (defined here as the whole of neurons, synapses and non-neuronal cells involved in cognitive functions) expressing brain superautoantigens. Overall, the brain superautoantigens theory suggests that cognitive evolution might have been primarily driven by internal cues rather than external environmental conditions. Importantly, while providing a unique molecular connection between neural and T-cell repertoires under physiological conditions, brain superautoantigens may also constitute an Achilles heel responsible for the particular susceptibility of Homo sapiens to "neuroimmune co-pathologies" i.e., disorders affecting both neural and T-cell repertoires. These may notably include paraneoplastic syndromes, multiple sclerosis as well as autism, schizophrenia and neurodegenerative diseases. In the context of this theoretical frame, a specific emphasis is given here to the potential evolutionary role exerted by two families of genes, namely the MHC class II genes, involved in antigen presentation to T-cells, and the Foxp genes, which play crucial roles in language (Foxp2) and the regulation of autoimmunity (Foxp3).

19.
Int J Mol Sci ; 18(10)2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28981455

RESUMO

We previously reported that, in multiple sclerosis (MS) patients with a progressive form of the disease, spinal cord periplaques extend distance away from plaque borders and are characterized by the co-occurrence of partial demyelination, astrocytosis and low-grade inflammation. However, transcriptomic analyses did not allow providing a comprehensive view of molecular events in astrocytes vs. oligodendrocytes. Here, we re-assessed our transcriptomic data and performed co-expression analyses to characterize astrocyte vs. oligodendrocyte molecular signatures in periplaques. We identified an astrocytosis-related co-expression module whose central hub was the astrocyte gene Cx43/GJA1 (connexin-43, also named gap junction protein α-1). Such a module comprised GFAP (glial fibrillary acidic protein) and a unique set of transcripts forming a TGFB/SMAD1/SMAD2 (transforming growth factor ß/SMAD family member 1/SMAD family member 2) genomic signature. Partial demyelination was characterized by a co-expression network whose central hub was the oligodendrocyte gene NDRG1 (N-myc downstream regulated 1), a gene previously shown to be specifically silenced in the normal-appearing white matter (NAWM) of MS patients. Surprisingly, besides myelin genes, the NDRG1 co-expression module comprised a highly significant number of translation/elongation-related genes. To identify a putative cause of NDRG1 downregulation in periplaques, we then sought to identify the cytokine/chemokine genes whose mRNA levels inversely correlated with those of NDRG1. Following this approach, we found five candidate immune-related genes whose upregulation associated with NDRG1 downregulation: TGFB1(transforming growth factor ß 1), PDGFC (platelet derived growth factor C), IL17D (interleukin 17D), IL33 (interleukin 33), and IL12A (interleukin 12A). From these results, we propose that, in the spinal cord periplaques of progressive MS patients, TGFB1 may limit acute inflammation but concurrently induce astrocytosis and an alteration of the translation/elongation of myelin genes in oligodendrocytes.


Assuntos
Inflamação/metabolismo , Esclerose Múltipla/metabolismo , Medula Espinal/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Astrócitos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Biologia Computacional , Conexina 43/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Interleucina-12/metabolismo , Subunidade p35 da Interleucina-12/metabolismo , Interleucina-17/metabolismo , Interleucina-33/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfocinas/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo
20.
Mol Cell Proteomics ; 16(8): 1394-1415, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28659490

RESUMO

The therapeutic use of RhoA inhibitors (RhoAi) has been experimentally tested in spinal cord injury (SCI). In order to decipher the underlying molecular mechanisms involved in such a process, an in vitro neuroproteomic-systems biology platform was developed in which the pan-proteomic profile of the dorsal root ganglia (DRG) cell line ND7/23 DRG was assessed in a large array of culture conditions using RhoAi and/or conditioned media obtained from SCI ex vivo derived spinal cord slices. A fine mapping of the spatio-temporal molecular events of the RhoAi treatment in SCI was performed. The data obtained allow a better understanding of regeneration/degeneration induced above and below the lesion site. Results notably showed a time-dependent alteration of the transcription factors profile along with the synthesis of growth cone-related factors (receptors, ligands, and signaling pathways) in RhoAi treated DRG cells. Furthermore, we assessed in a rat SCI model the in vivo impact of RhoAi treatment administered in situ via alginate scaffold that was combined with FK506 delivery. The improved recovery of locomotion was detected only at the early postinjury time points, whereas after overall survival a dramatic increase of synaptic contacts on outgrowing neurites in affected segments was observed. We validate these results by in vivo proteomic studies along the spinal cord segments from tissue and secreted media analyses, confirming the increase of the synaptogenesis expression factors under RhoAi treatment. Taken together, we demonstrate that RhoAi treatment seems to be useful to stimulate neurite outgrowth in both in vitro as well in vivo environments. However, for in vivo experiments there is a need for sustained delivery regiment to facilitate axon regeneration and promote synaptic reconnections with appropriate target neurons also at chronic phase, which in turn may lead to higher assumption for functional improvement.


Assuntos
Axônios/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Crescimento Neuronal/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Vesículas Sinápticas/efeitos dos fármacos , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Análise de Variância , Animais , Axônios/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/uso terapêutico , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiopatologia , Locomoção/efeitos dos fármacos , Crescimento Neuronal/fisiologia , Proteômica , Ratos , Regeneração/efeitos dos fármacos , Traumatismos da Medula Espinal/fisiopatologia , Vesículas Sinápticas/fisiologia , Tacrolimo , Fatores de Tempo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA