Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(5): 6327-6336, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38205804

RESUMO

The biomineralizing bacterium Sporosarcina pasteurii has attracted considerable interest in the area of geotechnical engineering due to its ability to induce extracellular mineralization. The presented study investigated S. pasteurii's potential to induce the mineralization of alkali-earth metal carbonate coatings on different polymeric 3D-printed flat surfaces fabricated by different additive manufacturing methods. The use of calcium, barium, strontium, or magnesium ions as the source resulted in the formation of vaterite (CaCO3), witherite (BaCO3), strontianite (SrCO3), and nesquehonite MgCO3·3H2O, respectively. These mineral coatings generally exhibit a compact, yet variable, thickness and are composed of agglomerated microparticles similar to those formed in solution. However, the mechanism behind this clustering remains unclear. The thermal properties of these biologically induced mineral coatings differ from their inorganic counterpart, highlighting the unique characteristics imparted by the biomineralization process. This work seeks to capitalize on the bacterium S. pasteurii's ability to form an alkali-earth metal carbonate coating to expand beyond its traditional use in geoengineering applications. It lays the ground for a novel integration of biologically induced mineralization of single or multilayered and multifunctional coating materials, for example, aerospace applications.


Assuntos
Biomineralização , Carbonatos , Carbonato de Cálcio , Minerais , Impressão Tridimensional
2.
Front Plant Sci ; 14: 1242150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818315

RESUMO

Fluorescent glucose derivatives are valuable tools as glucose analogs in plant research to explore metabolic pathways, study enzyme activity, and investigate cellular processes related to glucose metabolism and sugar transport. They allow visualization and tracking of glucose uptake, its utilization, and distribution within plant cells and tissues. This study investigates the phenotypic and metabolic impact of the exogenously fed glucose derivative, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose) (2-NBDG) on the fibers of Gossypium hirsutum (Upland cotton) ovule in vitro cultures. The presence of 2-NBDG in the culture medium did not lead to macroscopic morphological alterations in ovule and fiber development or to the acquisition of fluorescence or yellow coloration. Confocal laser scanning microscope imaging and chromatographic analysis of cotton ovules' outer rim cross-sections showed that the 2-NBDG is transported from the extracellular space and accumulated inside some outer integument cells, epidermal cells, and fertilized epidermal cells (fibers), but is not incorporated into the cell walls. Untargeted metabolic profiling of the fibers revealed significant changes in the relative levels of metabolites involved in glycolysis and upregulation of alternative energy-related pathways. To provide biochemical and structural evidence for the observed downregulation of glycolysis pathways in the fibers containing 2-NBDG, kinetics analysis and docking simulations were performed on hexokinase from G. hirsutum (GhHxk). Notably, the catalytic activity of heterologously expressed recombinant active GhHxk exhibited a five-fold decrease in reaction rates compared to D-glucose. Furthermore, GhHxk exhibited a linear kinetic behavior in the presence of 2-NBDG instead of the Michaelis-Menten kinetics found for D-glucose. Docking simulations suggested that 2-NBDG interacts with a distinct binding site of GhHxk9, possibly inducing a conformational change. These results highlight the importance of considering fluorescent glucose derivatives as ready-to-use analogs for tracking glucose-related biological processes. However, a direct comparison between their mode of action and its extrapolation into biochemical considerations should go beyond microscopic inspection and include complementary analytical techniques.

3.
Chembiochem ; 24(16): e202300388, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37253095

RESUMO

Glycosyltransferases (GTs) are a large and diverse group of enzymes responsible for catalyzing the formation of a glycosidic bond between a donor molecule, usually a monosaccharide, and a wide range of acceptor molecules, thus, playing critical roles in various essential biological processes. Chitin and cellulose synthases are two inverting processive integral membrane GTs, belonging to the type-2 family involved in the biosynthesis of chitin and cellulose, respectively. Herein, we report that bacterial cellulose and chitin synthases share an E-D-D-ED-QRW-TK active site common motif that is spatially co-localized. This motif is conserved among distant bacterial evolutionary species despite their low amino acid sequence and structural similarities between them. This theoretical framework offers a new perspective to the current view that bacterial cellulose and chitin synthases are substrate specific and that chitin and cellulose are organism specific. It lays the ground for future in vivo and in silico experimental assessment of cellulose synthase catalytic promiscuity against uridine diphosphate N-acetylglucosamine and chitin synthase against uridine diphosphate glucose, respectively.


Assuntos
Celulose , Quitina Sintase , Quitina Sintase/genética , Quitina Sintase/química , Quitina Sintase/metabolismo , Domínio Catalítico , Sequência de Aminoácidos , Bactérias/metabolismo , Quitina
4.
J Quat Sci ; 37(4): 612-638, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35915614

RESUMO

The Middle Pleistocene archaeological record of the southern Levant has proven key to understanding human evolution and intercontinental faunal biogeography. Knowledge of archaeological sites of that period in the southern Levant is biased, with most Middle Pleistocene localities in the Mediterranean areas in the north, despite the mosaic of environments that mark the entire region. A key Middle Pleistocene location in the Judean Desert - on the eastern margin of the Mediterranean zone - is the site of Oumm Qatafa, excavated in the early 1900s, which yielded a faunal collection spanning an estimated time period of 600-200 kya. Here, we present a revised taxonomy of the macromammalian fauna from the site, discuss the palaeoenvironmental implications of this assemblage, and relate the finds to other Pleistocene sites from the Levant. These data enable a more precise palaeoenvironmental reconstruction which attests to an open landscape, but with the addition of a mesic Mediterranean component close by. In addition, detailed taphonomic observations on butchery marks and Fourier transform infrared spectroscopy analysis of burnt bone link the fauna for the first time to anthropogenic activities in the cave.

5.
Proc Natl Acad Sci U S A ; 119(25): e2123439119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696581

RESUMO

Pyrotechnology is a key element of hominin evolution. The identification of fire in early hominin sites relies primarily on an initial visual assessment of artifacts' physical alterations, resulting in potential underestimation of the prevalence of fire in the archaeological record. Here, we used a suite of spectroscopic techniques to counter the absence of visual signatures for fire and demonstrate the presence of burnt fauna and lithics at the Lower Paleolithic (LP) open-air site of Evron Quarry (Israel), dated between 1.0 and 0.8 Mya and roughly contemporaneous to Gesher Benot Ya'aqov where early pyrotechnology has been documented. We propose reexamining finds from other LP sites lacking visual clues of pyrotechnology to yield a renewed perspective on the origin, evolution, and spatiotemporal dispersal of the relationship between early hominin behavior and fire use.


Assuntos
Evolução Biológica , Incêndios , Hominidae , Tecnologia , Animais , Arqueologia , Incêndios/história , História Antiga , Israel , Tecnologia/história
6.
Nat Hum Behav ; 5(2): 221-228, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33020589

RESUMO

Production of stone artefacts using pyro-technology is known from the Middle and Upper Palaeolithic of Europe and the Levant, and the Middle Stone Age in Africa. However, determination of temperatures to which flint artefacts were exposed is impeded by the chemical and structural variability of flint. Here we combine Raman spectroscopy and machine learning to build temperature-estimation models to infer the degree of pyro-technological control effected by inhabitants of the late Lower Palaeolithic (Acheulo-Yabrudian) site of Qesem Cave, Israel. Temperature estimation shows that blades were heated at lower median temperatures (259 °C) compared to flakes (413 °C), whereas heat-induced structural flint damage (for example, pot-lids and microcracks) appears at 447 °C. These results are consistent with a differential behaviour for selective tool production that can be viewed as part of a plethora of innovative and adaptive behaviours of Levantine hominins >300,000 years ago.


Assuntos
Arqueologia , História Antiga , Humanos , Temperatura
7.
J Struct Biol ; 213(1): 107665, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33227416

RESUMO

Biomineralization is a common strategy adopted by organisms to support their body structure. Plants practice significant silicon and calcium based biomineralization in which silicon is deposited as silica in cell walls and intracellularly in various cell-types, while calcium is deposited mostly as calcium oxalate in vacuoles of specialized cells. In this review, we compare cellular processes leading to protein-dependent mineralization in plants, diatoms and sponges (phylum Porifera). The mechanisms of biomineralization in these organisms are inherently different. The composite silica structure in diatoms forms inside the cytoplasm in a membrane bound vesicle, which after maturation is exocytosed to the cell surface. In sponges, separate vesicles with the mineral precursor (silicic acid), an inorganic template, and organic molecules, fuse together and are extruded to the extracellular space. In plants, calcium oxalate mineral precipitates in vacuolar crystal chambers containing a protein matrix which is never exocytosed. Silica deposition in grass silica cells takes place outside the cell membrane when the cells secrete the mineralizing protein into the apoplasm rich with silicic acid (the mineral precursor molecules). Our review infers that the organism complexity and precursor reactivity (calcium and oxalate versus silicic acid) are main driving forces for the evolution of varied mineralization mechanisms.


Assuntos
Biomineralização/fisiologia , Minerais/metabolismo , Poaceae/metabolismo , Proteínas/metabolismo , Dióxido de Silício/metabolismo , Animais , Parede Celular/metabolismo , Diatomáceas/metabolismo , Poríferos/metabolismo
8.
ACS Omega ; 5(50): 32490-32497, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33376886

RESUMO

Global warming has prompted a search for new materials that capture and sink carbon dioxide (CO2). Biochar is a derivative of biomass pyrolysis and a carbon sink mainly used to improve crop production. This work explores the underlying mechanism behind biochar's electric conductivity using a wide range of feedstocks and its combination with a binder (gypsum). This gypsum-biochar composite exhibits decreased density and flexural moduli with increasing biochar content, particularly after 20% w/w. Gypsum-biochar drywall-like composite prototypes display increasing shielding efficiency mostly in the microwave range as a function of biochar content, differing from other conventional metal (copper) and synthetic carbon-based materials. This narrow range of electromagnetic interference (EMI) shielding is attributed to natural alignment (isotropy) of the carbon ultrastructure (e.g., lignin) induced by heat and intrinsic interconnectivity in addition to traditional phenomena such as dissipation of surface currents and polarization in the electric field. These biomass-derived products could be used as sustainable lightweight materials in a future bio-based economy.

11.
Small ; 15(22): e1805312, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30951252

RESUMO

The impressive mechanical properties of natural composites, such as nacre, arise from their multiscale hierarchical structures, which span from nano- to macroscale and lead to effective energy dissipation. While some synthetic bioinspired materials have achieved the toughness of natural nacre, current production methods are complex and typically involve toxic chemicals, extreme temperatures, and/or high pressures. Here, the exclusive use of bacteria to produce nacre-inspired layered calcium carbonate-polyglutamate composite materials that reach and exceed the toughness of natural nacre, while additionally exhibiting high extensibility and maintaining high stiffness, is introduced. The extensive diversity of bacterial metabolic abilities and the possibility of genetic engineering allows for the creation of a library of bacterially produced, cost-effective, and eco-friendly composite materials.


Assuntos
Materiais Biomiméticos/química , Nanocompostos/química , Carbonato de Cálcio/química , Microscopia Eletrônica de Varredura , Ácido Poliglutâmico/química
12.
Mater Sci Eng C Mater Biol Appl ; 100: 315-322, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30948067

RESUMO

Herein appropriateness of nonfunctionalized mesoporous silica nanoparticles SBA-15 and functionalized with (3-chloropropyl)triethoxysilane (→ SBA-15~Cl) and (3-aminopropyl)triethoxysilane (→ SBA-15~NH2) on delivery of physically adsorbed Ph3Sn(CH2)6OH (Sn6) is evaluated. Fluorescent nanomaterial, bearing isatoic moiety, loaded with Sn6 (→ SBA-15~NF|Sn6) was used for cellular uptake study. The fluorescent nanomaterial is efficiently acquired and distributed into the cytoplasm of the cells even after 2 h of cultivation. According to the attained data, all SBA-15 materials loaded with Sn6 diminished cellular viability in dose dependent manner while carriers alone (SBA-15, SBA-15~Cl, SBA-15~NH2) did not show cytotoxicity against B16 cells. According to the MC50 values structural modification of SBA-15 did not improve the efficacy of tested drug. While progressive apoptosis was detected upon the treatment with SBA-15|Sn6, exposure of cells to SBA-15~NH2|Sn6 revealed extinguished apoptosis in time, accompanied with lower caspase activity. This effect is probably due to triggered autophagic process under the treatment with the SBA-15~NH2|Sn6, thus opposed to apoptosis. Presented results suggested that functionalization of SBA-15 was not beneficial for the efficacy of loaded drug, thus, all of them are almost equally efficient considering loaded Sn6 content. Importantly, functionalization of SBA-15 does have an influence on the mode of action and differentiation inducing properties.


Assuntos
Compostos Orgânicos de Estanho/química , Dióxido de Silício/química , Anidridos/química , Animais , Corantes Fluorescentes/química , Camundongos , Nanopartículas/química , Nanopartículas/ultraestrutura , Porosidade , Propilaminas/química , Silanos/química , ortoaminobenzoatos/química
13.
Science ; 357(6356): 1118-1122, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28912238

RESUMO

Cotton is a promising basis for wearable smart textiles. Current approaches that rely on fiber coatings suffer from function loss during wear. We present an approach that allows biological incorporation of exogenous molecules into cotton fibers to tailor the material's functionality. In vitro model cultures of upland cotton (Gossypium hirsutum) are incubated with 6-carboxyfluorescein-glucose and dysprosium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-glucose, where the glucose moiety acts as a carrier capable of traveling from the vascular connection to the outermost cell layer of the ovule epidermis, becoming incorporated into the cellulose fibers. This yields fibers with unnatural properties such as fluorescence or magnetism. Combining biological systems with the appropriate molecular design offers numerous possibilities to grow functional composite materials and implements a material-farming concept.


Assuntos
Celulose/química , Fibra de Algodão/métodos , Disprósio/metabolismo , Fluoresceínas/metabolismo , Glucose/análogos & derivados , Glucose/metabolismo , Celulose/metabolismo , Técnicas de Cultura , Fluoresceínas/química , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo
14.
Sensors (Basel) ; 17(6)2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28545236

RESUMO

In this paper, we apply a digital holographic microscope (DHM) in conjunction with stroboscopic acquisition synchronization. Here, the temperature-dependent decrease of the first resonance frequency (S1(T)) and Young's elastic modulus (E1(T)) of silicon micromechanical cantilever sensors (MCSs) are measured. To perform these measurements, the MCSs are uniformly heated from T0 = 298 K to T = 450 K while being externally actuated with a piezo-actuator in a certain frequency range close to their first resonance frequencies. At each temperature, the DHM records the time-sequence of the 3D topographies for the given frequency range. Such holographic data allow for the extracting of the out-of-plane vibrations at any relevant area of the MCSs. Next, the Bode and Nyquist diagrams are used to determine the resonant frequencies with a precision of 0.1 Hz. Our results show that the decrease of resonance frequency is a direct consequence of the reduction of the silicon elastic modulus upon heating. The measured temperature dependence of the Young's modulus is in very good accordance with the previously-reported values, validating the reliability and applicability of this method for micromechanical sensing applications.

15.
Chemistry ; 23(21): 4973-4980, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28248430

RESUMO

Boron's unusual properties inspired major advances in chemistry. In nature, the existence and importance of boron has been fairly explored (e.g. bacterial signaling, plant development) but its role as biological catalyst was never reported. Here, we show that boric acid [B(OH)3 ] can restore chloroperoxidase activity of Curvularia inaequalis recombinant apo-haloperoxidase's (HPO) in the presence of hydrogen peroxide and chloride ions. Molecular modeling and semi-empirical PM7 calculations support a thermodynamically highly favored (bio)catalytic mechanism similarly to vanadium haloperoxidases (V-HPO) in which [B(OH)3 ] is assumedly located in apo-HPO's active site and a monoperoxyborate [B(OH)3 (OOH)- ] intermediate is formed and stabilized by interaction with specific active site amino acids leading ultimately to the formation of HOCl. Thus, B(OH)3 -HPO provides the first evidence towards the future exploitation of boron's role in biological systems.

16.
J Struct Biol ; 198(3): 186-195, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28323140

RESUMO

The skeletal system of Demospongiae consists of siliceous spicules, which are composed of an axial channel containing an organic axial filament (AF) surrounded by a compact layer of hydrated amorphous silica. Here we report the ultrastructural investigations of the AF of siliceous spicules from two Demospongiae: Suberites domuncula and Tethya aurantium. Electron microscopy, electron diffraction and elemental mapping analyses on both longitudinal and transversal cross-sections yield that spicules's AF consist of a three-dimensional crystal lattice of six-fold symmetry. Its structure, which is the result of a biological growth process, is a crystalline assembly characterized by a lattice of organic cages (periodicity in the range of 6nm) filled with enzymatically-produced silica. In general, the six-fold lattice symmetry is reflected by the morphology of the AF, which is characterized by six-fold facets. This seems to be the result of a lattice energy minimization process similar to the situation found during the growth of inorganic crystals. Our structural exploitation of three-dimensional organic lattices generated by biological systems is expected to contribute for explaining the relation between axial filament's ultrastructure and spicule's ultimate morphology.


Assuntos
Poríferos/anatomia & histologia , Dióxido de Silício/química , Animais , Cristalização , Análise de Elementos Finitos , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão , Morfogênese , Compostos Orgânicos/química , Poríferos/química , Poríferos/crescimento & desenvolvimento , Poríferos/ultraestrutura , Suberites/ultraestrutura
17.
J Struct Biol ; 194(3): 292-302, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26965558

RESUMO

Cotton is the one of the world's most important crops. Like any other crop, cotton growth/development and fiber quality is highly dependent on environmental factors. Increasing global weather instability has been negatively impacting its economy. Cotton is a crop that exerts an intensive pressure over natural resources (land and water) and demands an overuse of pesticides. Thus, the search for alternative cotton culture methods that are pesticide-free (biocotton) and enable customized standard fiber quality should be encouraged. Here we describe a culture of Gossypium hirsutum ("Upland" Cotton) utilizing a greenhouse and hydroponics in which the fibers are morphological similar to conventional cultures and structurally fit into the classical two-phase cellulose I model with 4.19nm crystalline domains surrounded by amorphous regions. These fibers exhibit a single crystalline form of cellulose I-Iß, monoclinic unit cell. Fiber quality bulk analysis shows an improved length, strength, whiteness when compared with soil-based cultures. Finally, we show that our fibers can be spun, used for production of non-woven fabrics and indigo-vat stained demonstrating its potential in industrial and commercial applications.


Assuntos
Fibra de Algodão/normas , Gossypium/química , Hidroponia/métodos , Celulose/química , Fibra de Algodão/métodos , Genes de Plantas , Gossypium/crescimento & desenvolvimento , Efeito Estufa , Hidroponia/normas
18.
Nanoscale ; 8(18): 9548-55, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-26818395

RESUMO

One endeavour of nanochemistry is the bottom-up synthesis of functional mesoscale structures from basic building blocks. We report a one-pot wet chemical synthesis of Ni@γ-Fe2O3 superparticles containing Ni cores densely covered with highly oriented γ-Fe2O3 (maghemite) nanorods (NRs) by controlled reduction/decomposition of nickel acetate (Ni(ac)2) and Fe(CO)5. Automated diffraction tomography (ADT) of the Ni-Fe2O3 interface in combination with Mössbauer spectroscopy showed that selective and oriented growth of the γ-Fe2O3 nanorods on the Ni core is facilitated through the formation of a Fe0.05Ni0.95 alloy and the appearance of superstructure features that may reduce strain at the Ni-Fe2O3 interface. The common orientation of the maghemite nanorods on the Ni core of the superparticles leads to a greatly enhanced magnetization. After functionalization with a catechol-functional polyethylene glycol (C-PEG) ligand the Ni@γ-Fe2O3 superparticles were dispersible in water.

19.
Sci Rep ; 5: 13303, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26310998

RESUMO

Pottery was a traditional art and technology form in pre-colonial Amazonian civilizations, widely used for cultural expression objects, utensils and as cooking vessels. Abundance and workability of clay made it an excellent choice. However, inferior mechanical properties constrained their functionality and durability. The inclusion of reinforcement particles is a possible route to improve its resistance to mechanical and thermal damage. The Amazonian civilizations incorporated freshwater tree sponge spicules (cauixí) into the clay presumably to prevent shrinkage and crack propagation during drying, firing and cooking. Here we show that isolated siliceous spicules are almost defect-free glass fibres with exceptional mechanical stability. After firing, the spicule Young's modulus increases (from 28 ± 5 GPa to 46 ± 8 GPa) inferring a toughness increment. Laboratory-fabricated ceramic models containing different inclusions (sand, glass-fibres, sponge spicules) show that mutually-oriented siliceous spicule inclusions prevent shrinkage and crack propagation leading to high stiffness clays (E = 836 ± 3 MPa). Pre-colonial amazonian potters were the first civilization known to employ biological materials to generate composite materials with enhanced fracture resistance and high stiffness in the history of mankind.

20.
J Mater Chem B ; 3(11): 2371-2377, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32262067

RESUMO

Surface functionalized ZrO2 nanoparticles show strong photoluminescence and are a versatile tool for cellular targeting due to their chemical functionality. They are highly photostable, biocompatible and amenable to coupling with bioligands (e.g. secondary goat anti-rabbit antibody (GAR) and tri-phenyl phosphine (TPP)) via carbodiimide chemistry. Antibody (GAR) functionalized ZrO2 nanoparticles were used to image the nuclear protein Sirt6, whereas triphenyl phosphonium ion (TPP) functionalized ZrO2 nanoparticles specifically targeted the mitochondria. The versatility and easiness of the ZrO2 surface modification opens up new possibilities for designing non-toxic water dispersible and photostable photoluminescent NPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA