RESUMO
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that typically manifests late patient presentation and poor outcomes. Furthermore, PDAC recurrence is a common challenge. Distinct patterns of PDAC recurrence have been associated with differential activation of immune pathway-related genes and specific inflammatory responses in their tumour microenvironment. However, the molecular associations between and within cellular components that underpin PDAC recurrence require further development, especially from a multi-omics integration perspective. In this study, we identified stable molecular associations across multiple PDAC recurrences and utilised integrative analytics to identify stable and novel associations via simultaneous feature selection. Spatial transcriptome and proteome datasets were used to perform univariate analysis, Spearman partial correlation analysis, and univariate analyses by Machine Learning methods, including regularised canonical correlation analysis and sparse partial least squares. Furthermore, networks were constructed for reported and new stable associations. Our findings revealed gene and protein associations across multiple PDAC recurrence groups, which can provide a better understanding of the multi-layer disease mechanisms that contribute to PDAC recurrence. These findings may help to provide novel association targets for clinical studies for constructing precision medicine and personalised surveillance tools for patients with PDAC recurrence.