Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 102(12): 2407-2410, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30365362

RESUMO

The soybean cyst nematode (SCN), Heterodera glycines, is one of the most important pathogens of soybean. Periodic monitoring of SCN population densities and virulence phenotypes is necessary for developing management strategies utilizing resistant cultivars, the primary strategy used to combat this pest. Therefore, we conducted a statewide survey of Missouri to determine SCN population densities and virulence phenotypes during 2015-2016 and compared these results with a similar survey conducted in 2005. SCN population densities were determined for 393 soil samples representing 74 soybean-producing counties across eight geographical regions of Missouri. Eighty-eight percent of samples tested positive for SCN, up from 50% in 2005, and population densities ranged from 125 to 99,000 eggs per 250 cm3 of soil. The virulence phenotypes of 48 SCN populations also were determined. For this, female indices (FI) were calculated by dividing the mean number of females that develop on the roots of a set of resistant soybean indicator lines by the mean number of females that develop on the roots of susceptible cultivar Lee74 after 30 days in the greenhouse then multiplying by 100 to obtain a percentage. Notably, all SCN populations evaluated during 2015-2016 had a FI > 10 on PI 88788, the most widely used source of resistance in Missouri, in contrast to 78% in 2005. Moreover, 50% of these populations had a FI > 50 on PI 88788, up from 16% in 2005. Forty-three percent of populations tested also had a FI > 10 on Peking, the second most common source of resistance by farmers. Our results show that over the last decade, SCN has become more prevalent in Missouri fields. Additionally, the percentage of individuals within SCN field populations that are virulent on PI 88788 and Peking has markedly increased. The results stress the importance of rotating cultivars with different types of resistance when using resistant cultivars to manage SCN.


Assuntos
Glycine max/parasitologia , Doenças das Plantas/parasitologia , Tylenchoidea/patogenicidade , Virulência , Animais , Geografia , Missouri , Fenótipo , Raízes de Plantas/parasitologia , Densidade Demográfica , Inquéritos e Questionários , Tylenchoidea/crescimento & desenvolvimento
2.
J Environ Qual ; 44(2): 585-93, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26023977

RESUMO

Installing subsurface tile drain systems in poorly drained claypan soils to improve corn ( L.) yields could potentially increase environmental phosphorus (P) loss through the tile drainage system. The objectives of the study were to quantify the average concentration and loss of ortho-P in tile drain water from a claypan soil and to determine whether managed subsurface drainage (MD) could reduce ortho-P loss in tile water compared with free subsurface drainage (FD). Flow-weighted ortho-P concentration in the tile water was significantly lower with MD (0.09 mg L) compared with that of FD (0.15 mg L). Ortho-P loss in the tile water of this study was reduced with MD (36 g ha) by 80% compared with FD (180 g ha). Contrary to previous research, reduced ortho-P loss observed over the 4-yr study was not solely due to the reduced amount of water drained annually (63%) with MD compared with FD. During the spring period, when flow was similar between MD and FD, the concentration of ortho-P in the tile water generally was lower with MD compared with FD, which resulted in significantly less ortho-P loss with MD. We speculate that MD's ability to conserve water during the dry summer months increased corn's uptake of water and P, which reduced the amount of P available for leaching loss in the subsequent springs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA