Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 57(13): 3534-3538, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29726531

RESUMO

We present a system that is based on a new external, polarization-insensitive differential interference contrast (DIC) module specifically adapted for detecting defects in semiconductor wafers. We obtained defect signal enhancement relative to the surrounding wafer pattern when compared with bright-field imaging. The new DIC module proposed is based on a shearing interferometer that connects externally at the output port of an optical microscope and enables imaging thin samples, such as wafer defects. This module does not require polarization optics (such as Wollaston or Nomarski prisms) and is insensitive to polarization, unlike traditional DIC techniques. In addition, it provides full control of the DIC shear and orientation, which allows obtaining a differential phase image directly on the camera (with no further digital processing) while enhancing defect detection capabilities, even if the size of the defect is smaller than the resolution limit. Our technique has the potential of future integration into semiconductor production lines.

2.
Opt Lett ; 42(8): 1492-1495, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28409780

RESUMO

We propose a compact and external off-axis interferometric module that can achieve interference with low spatial coherence illumination over the entire field of view. The interferometer is easy to align and stable and can be connected to the output of an existing microscope illuminated with a low spatial coherence light source, thus allowing quantitative phase imaging with a low degree of spatial noise. We demonstrate the imaging and the interference properties of the proposed interferometric module and use it for quantitative phase imaging of reflective samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA