Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Pharm Des ; 29(4): 239-245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36624648

RESUMO

Metallic nanoparticles (MNPs) have been widely used for diagnostic and therapeutic purposes in clinical practice. A number of MNP formulations are being investigated in clinical trials for various applications. This increase in the use of NPs results in higher exposure to humans, leading to toxicity issues. Hence, it is necessary to determine the possible undesirable effects of the MNPs after in-vivo application and exposure. One of the main reasons for the toxicity of MNPs is the release of their respective metallic ions throughout the body. Many research studies are in progress investigating the various strategies to reduce the toxicity of MNPs. These research studies aim to change the size, dose, agglomeration, release, and excretion rates of MNPs. In this perspective review, we discussed the possible strategies to improve the therapeutic effects of MNPs through various processes, with lessons learned from the studies involving silver nanoparticles (AgNPs). We also discussed the ways to manage the toxicity of MNPs by purification, surface functionalization, synergistic effect, and targeted therapy approach. All these strategies could reduce the dose of the MNPs without compromising their therapeutic benefits, which could decrease the toxicity of MNPs. Additionally, we briefly discussed the market and toxicology testing for FDA-regulated MNPs.


Assuntos
Nanopartículas de Magnetita , Nanopartículas Metálicas , Nanopartículas , Humanos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/uso terapêutico , Prata
2.
Eur J Pharm Sci ; 165: 105938, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34256103

RESUMO

The pH-stimuli release behavior of nanoformulations may enhance the success rate of chemotherapeutic drugs in cancers by site-specific delivery of drugs to cancer tissues. The aim of the present study was to prepare chitosan (CS) nanoparticles (NPs) with previously synthesized folic acid (FA) capped silver nanoparticles (AgNPs) loaded with the anti-cancer drug gemcitabine (GEM) (FA-GEM-AgNPs). The CS-FA-GEM-AgNPs (CS-NPs) were characterized with dynamic light scattering (DLS), transmission electron microscopy (TEM), energy dispersive x-ray analysis (EDAX), selected area electron diffraction (SAED), and differential scanning calorimetric (DSC) analyses. The in-vitro drug release of GEM was evaluated in media of different pH. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was carried out to determine the cytotoxic effects of the prepared nanoformulations in media with various pH. The time- and pH-dependent apoptotic cell death induced by CS-NPs with MDA-MB-453 human breast cancer cell line was observed using acridine orange (AO)/ethidium bromide (EtBr) staining. The pharmacokinetic parameters were studied with high-performance liquid chromatography (HPLC) and atomic absorption spectroscopy (AAS). Two batches of CS-NPs formulations were prepared, one with AgNPs of particle size 143 nm and the other with 244 nm. The particle size for CS-NPs-I (FA-GEM-AgNPs-143 nm) and CS-NPs-II (FA-GEM-AgNPs-244 nm) was found to be 425 and 545 nm, respectively. The zeta potential was found to be 36.1 and 37.5 mV for CS-NPs-I and CS-NPs-II, respectively. CS-NPs-I and CS-NPs-II showed a polydispersity index (PDI) of 0.240 and 0.261, respectively. A TEM study confirmed the spherical nature of the NPs. The nanoformulations exerted pH-dependant effect against MDA-MB-453 cells with relatively higher cytotoxicity at the lower pH than at higher pH levels. The pharmacokinetic profile and tissue distribution of CS-NPs in rats exerted drug release in a pH-dependent manner with enhanced excretion of Ag+. An optimized nanoformulation for pH-stimuli responsive release of GEM was successfully developed for future therapeutic exploration.


Assuntos
Neoplasias da Mama , Quitosana , Nanopartículas Metálicas , Nanopartículas , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Feminino , Ácido Fólico , Humanos , Concentração de Íons de Hidrogênio , Tamanho da Partícula , Ratos , Prata , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA