Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Asian Pac J Cancer Prev ; 25(4): 1301-1313, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38679991

RESUMO

OBJECTIVE: Breast cancer ranks second in terms of the highest number of cancer deaths for women worldwide and is one of the leading causes of death from cancer in women. The drug that is often used for chemotherapy is cisplatin. However, cisplatin drugs have a number of problems, including lack of selectivity, unwanted side effects, resistance, and toxicity in the body. In this work, we investigated Ni(II) cysteine-tyrosine dithiocarbamate complex against breast cancer. METHODS: Research on the new complex compound Ni(II) cysteine-tyrosine dithiocarbamate have several stages including synthesis, characterization, in-silico and in-vitro testing of MCF-7 cells for anticancer drugs. The synthesis involved reacting cysteine, CS2, KOH and tyrosine with Mn metal. The new complex compound Ni(II) cysteine-tyrosine dithiocarbamate has been synthesized, characterized, and tested in vitro MCF-7 cells for anticancer drugs. Characterization tests such as melting point, conductivity, SEM-EDS, UV Vis, XRD, and FT-IR spectroscopy have been carried out. RESULT: The synthesis yielded a 60,16%, conversion with a melting point of 216-218 oC and a conductivity value of 0.4 mS/cm. In vitro test results showed morphological changes (apoptosis) in MCF-7 cancer cells starting at a sample concentration of 250 µg/mL and an IC50 value of 618.40 µg/mL. Molecular docking study of Ni(II) cysteine-tyrosine dithiocarbamate complex identified with 4,4',4''-[(2R)-butane-1,1,2-triyl]triphenol - Estrogen α showing active site with acidic residue amino E323, M388, L387, G390 and I389. Hydrophobic and hydrophobic bonds are seen in Ni(II) cysteine-tyrosine dithiocarbamate - Estrogen α has a binding energy of -80.9429 kJ /mol. CONCLUSION: there were 5 residues responsible for maintaining the ligand binding stable. The compound had significant Hbond contact intensity, however, it was not strong enough to make a significant anticancer effect. Though the synthesized compound shows low bioactivity, this research is expected to give valuable insight into the effect of molecular structure on anticancer activity.


Assuntos
Antineoplásicos , Neoplasias da Mama , Proliferação de Células , Cisteína , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Níquel , Tiocarbamatos , Tirosina , Humanos , Níquel/química , Níquel/farmacologia , Tiocarbamatos/farmacologia , Tiocarbamatos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Tirosina/farmacologia , Tirosina/química , Células MCF-7 , Feminino , Cisteína/química , Cisteína/farmacologia , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Apoptose/efeitos dos fármacos , Células Tumorais Cultivadas
2.
Asian Pac J Cancer Prev ; 24(12): 4155-4165, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38156851

RESUMO

OBJECTIVE: Cervical cancer is a malignancy originating from the cervix and often caused by oncogenic Human Papilloma Virus (HPV), specifically subtypes 16 and 18. Anticancer drugs are chemotherapeutic compounds used for cancer treatment. Therefore, this research aims to synthesize and characterize Zinc (II) dichloroethylenediamine (Zn(en)Cl2) complex, as well as determine its antiproliferative activity against HeLa cells. The Zn(en)Cl2 complex was successfully synthesized, and the antiproliferative activity was tested. METHODS: The synthesis involved reacting ethylenediamine and KCl with Zn metal. The complex formed was characterized using a conductometer, UV-Vis spectroscopy, FT-IR spectroscopy, and XRD, while the activity was measured against HeLa cells. RESULT: The synthesis yielded a 56.12% conversion with a melting point of 198-200 oC and a conductivity value of 2.02 mS/cm. The Zn(en)Cl2 complex showed potential activity against HeLa cells with an IC50 value of 898.35 µg/mL, which was evidenced by changes in the morphological structure of HeLa cells. Its interaction with DNA targets was investigated by employing molecular docking. CONCLUSION: The observed data indicated that the Zn(en)Cl2 complex bound to DNA at the nitrogenous base Guanine (DG) by coordinate covalent bonds. Interestingly, DG maintained interaction with the complex until the end of the docking simulation. Additionally, molecular dynamics (MD) simulation was conducted, and the results showed that Zn(en)Cl2 remained bound to the DNA binding pocket all through the process.


Assuntos
Antineoplásicos , Neoplasias do Colo do Útero , Humanos , Feminino , Zinco/farmacologia , Células HeLa , Simulação de Acoplamento Molecular , Neoplasias do Colo do Útero/tratamento farmacológico , Colo do Útero/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Antineoplásicos/química , DNA , Ligantes
3.
Mol Divers ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37884781

RESUMO

Cisplatin is a cancer medication widely used today, but it still poses some problems due to its toxic properties in the body. To overcome this issue, a new complex has been developed as a potential anticancer drug prospect by minimizing its toxic consequences. A novel Zn(II)IleDTC complex containing isoleucine dithiocarbamate ligands has been produced and analyzed using a range of analytical and spectroscopic methods. The Zn(II) IleDTC complex were characterized using various methods, including UV-Vis spectroscopy, FT-IR, determination of melting point, conductivity, and HOMO-LUMO analysis. Furthermore, computational NMR spectrum analysis was conducted in this study. Molecular docking studies was conducted to evaluate the potential of Zn(II) isoleucine dithiocarbamate as an HIF1 inhibitor. The results showed that the Zn complex exhibited a good docking score of -6.6 and formed hydrogen bonds with ARG 17, VAL264, and GLU15, alkyl bonds with TRP27 and LEU32, and Pi-Alkyl bonds with PRO41 and ARG44. This suggests that the Zn(II) isoleucine dithiocarbamate complex could be a promising candidate for cancer treatment with potential HIF1 inhibition properties. To assess the dynamic stability and efficacy of protein-ligand interactions over time, molecular dynamics simulations was conducted for both individual proteins and protein complexes. The cytotoxicity evaluation of Zn(II) isoleucine dithiocarbamate against MCF-7 cells obtained an IC50 value of 362.70 µg/mL indicating moderate cytotoxicity and morphological changes of cancer cells causing cancer cells to undergo apoptosis. The Zn(II) isoleucine dithiocarbamate complex may have promising potential as an anticancer compound due to its significant inhibitory effect on the breast cancer cell line (MCF7). According to the ADMET study, the complex exhibits drug-like characteristics with low toxicity, further supporting its potential as a viable drug candidate.

4.
J Biochem Mol Biol Biophys ; 6(4): 279-82, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12186745

RESUMO

Chitinase and chitindeacetylase are enzymes capable of degrading chitin into chitooligomers and chitosan. The chitinases characterized and purified in this study were extracted from the acidophillic Bacillus sp. isolated from Kamojang Crater West Java Indonesia. When grown in liquid media containing colloidal chitin, the optimum chitinase activity of the acidophilic isolate was reached after 4-5 days of incubation. The optimum temperature and pH of the chitinase and chitin deacetylase were found at 37 degrees C and pH 5. When incubated at pH 5, the activity of chitin deacetylase was increased; after 3 h, the activity was 1.5 times of the control. The enzyme was stable at pH 4, after 2 h incubation, the activity was still 80% of the control. The chitinase and chitin deacetylase activities were not influenced by Mg(++) nor Ca(++), Ni(++) and Cu(++) inhibited the chitinase activity, while chitin deacetylase activity was not affected by Cu(++) addition. When 1 mM of EDTA was added, the enzyme activity was reduced 40 to 50%.


Assuntos
Amidoidrolases/química , Bacillus/enzimologia , Quitinases/química , Cálcio/farmacologia , Quitina/química , Quitina/metabolismo , Cobre/farmacologia , Concentração de Íons de Hidrogênio , Indonésia , Magnésio/farmacologia , Níquel/farmacologia , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA