Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Asian Pac J Cancer Prev ; 24(11): 3917-3924, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019251

RESUMO

OBJECTIVE: Fructose and glucose are types of sugars commonly found in the diet that have been linked to cancer development. Glucose transporters (GLUTs) are facilitating the uptake of these hexoses. Expression of GLUT5 is higher in cancer cells than in healthy tissue. GLUT7 and GLUT11 facilitate the transport of glucose and fructose; however, their expression in breast cancer has not been extensively studied. The Bcl-2 family has been known as a regulator of the cell's survival and death. Here, we investigated the effect of the fructose-glucose combination in MCF-7 breast cancer cells on the viability, migration, and expression of GLUT5, GLUT7, GLUT11, and Bcl-2/Bax ratio. METHODS: Breast cancer cells MCF-7 were treated with fructose, glucose, and combinations of fructose:glucose (75%:25%, 50%:50%, 25%:75%). Cell viability was assessed using an MTT test. Cell migration was examined with a wound-healing assay. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to evaluate the mRNA expression of GLUT5, GLUT7, GLUT11, and Bcl-2/Bax. RESULTS: The viability and migration of MCF-7 breast cancer cells elevated when treated with a combination of fructose and glucose, and glucose alone, compared to fructose alone. The expression levels of GLUT5 and GLUT7 were highest in combination of fructose:glucose (75%:25%). Conversely, the expression of GLUT11 was consistently low across all treated media. The highest Bcl-2/Bax ratio was shown in fructose:glucose combination (25%:75%). CONCLUSION: The viability, migration, and Bcl-2/Bax ratio are enhanced in the combination media with higher glucose. In contrast, when the fructose composition was higher in the media, expression of GLUT5 and GLUT7 increased.


Assuntos
Neoplasias da Mama , Frutose , Proteínas Facilitadoras de Transporte de Glucose , Glucose , Feminino , Humanos , Proteína X Associada a bcl-2/genética , Neoplasias da Mama/tratamento farmacológico , Frutose/farmacologia , Glucose/farmacologia , Células MCF-7 , Proteínas Facilitadoras de Transporte de Glucose/genética
2.
Breast Dis ; 40(4): 251-256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34092577

RESUMO

BACKGROUND: The role of gluconeogenesis in cancer cells as the reverse pathway for glycolysis is not well known. Several studies of gluconeogenesis in cancer cells still show conflicting results. Expression of key enzymes such as FBP1 and LDHB in cancer tissues may explain the role of gluconeogenesis in tumor development. OBJECTIVE: This study aimed to analyze the expression of FBP1 and LDHB in fibroadenomas and invasive cancers of the breast. METHODS: The immunohistochemical staining technique was used to show the expression of FBP1 and LDHB in formalin-fixed, paraffin-embedded blocks of 32 fibroadenomas and 31 invasive breast cancer samples. RESULTS: FBP1 was expressed by the majority of fibroadenoma (68.7%) and invasive breast cancer (71%) samples. LDHB expression in fibroadenomas was significantly higher than in invasive breast cancers (P = 0.029). The expression of these two enzymes was found in invasive, lobular, and tubular breast carcinoma, and at well, moderately, and poorly differentiated breast malignancy. CONCLUSIONS: High expression of FBP1 and LDHB was found in fibroadenomas and invasive breast cancers. A higher level of LDHB expression was observed in fibroadenomas. These results may indicate the enzymes' role in the pathogenesis of both breast diseases.


Assuntos
Neoplasias da Mama/enzimologia , Fibroadenoma/enzimologia , Lactato Desidrogenases/metabolismo , Adenocarcinoma/enzimologia , Adulto , Carcinoma Ductal de Mama/enzimologia , Carcinoma Lobular/enzimologia , Feminino , Frutose-Bifosfatase/metabolismo , Humanos , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA