Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4642, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607908

RESUMO

Dynamic color change has evolved multiple times, with a physiological basis that has been repeatedly linked to dermal photoreception via the study of excised skin preparations. Despite the widespread prevalence of dermal photoreception, both its physiology and its function in regulating color change remain poorly understood. By examining the morphology, physiology, and optics of dermal photoreception in hogfish (Lachnolaimus maximus), we describe a cellular mechanism in which chromatophore pigment activity (i.e., dispersion and aggregation) alters the transmitted light striking SWS1 receptors in the skin. When dispersed, chromatophore pigment selectively absorbs the short-wavelength light required to activate the skin's SWS1 opsin, which we localized to a morphologically specialized population of putative dermal photoreceptors. As SWS1 is nested beneath chromatophores and thus subject to light changes from pigment activity, one possible function of dermal photoreception in hogfish is to monitor chromatophores to detect information about color change performance. This framework of sensory feedback provides insight into the significance of dermal photoreception among color-changing animals.


Assuntos
Retroalimentação Sensorial , Opsinas , Animais , Opsinas de Bastonetes , Peixes , Pele
2.
Medicina (Kaunas) ; 57(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34946316

RESUMO

Background and Objectives: Fluoroquinolones (FQs) are a broad-spectrum class of antibiotics routinely prescribed for common bacterial infections despite recent recommendations to use them only for life-threatening cases. In addition to their antimicrobial properties, FQs act in the central nervous system as GABAA receptor inhibitors, which could potentially affect functionality of the vagus nerve at the forefront of gastrointestinal (GI) tract function. Alterations in neural control of digestion have been shown to be linked to Functional Gastrointestinal Disorders (FGIDs), which are usually diagnosed based on self-reported symptoms. The aim of this study was to assess the incidence of FGIDs following FQ use. Materials and Methods: Self-reports from the FDA Adverse Event Reporting System were analyzed together with ~300 survey responses from a social network derived sample to the Bowel Disease Questionnaire. Results: The results of this study suggested that six different FQs are associated with a wide range of GI symptoms not currently reported in the drugs' labels. The responses from the survey suggested that ~70% of FQ users scored positive for FGID, with no positive correlation between drug type, duration of administration, dosage and frequency of administration. Conclusions: This study showed that GI disorders other than nausea, vomiting and diarrhea are more common than currently reported on the drug labels, and that FGIDs are possibly a common consequence of FQ use even after single use.


Assuntos
Infecções Bacterianas , Gastroenteropatias , Antibacterianos/uso terapêutico , Fluoroquinolonas/efeitos adversos , Gastroenteropatias/induzido quimicamente , Gastroenteropatias/diagnóstico , Humanos , Inquéritos e Questionários
3.
Integr Comp Biol ; 61(2): 603-612, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-33956151

RESUMO

The elongate body plan is present in many groups of fishes, and this morphology dictates functional consequences seen in swimming behavior. Previous work has shown that increasing the number of vertebrae, or decreasing the intervertebral joint length, in a fixed length artificial system increases stiffness. Tails with increased stiffness can generate more power from tail beats, resulting in an increased mean swimming speed. This demonstrates the impacts of morphology on both material properties and kinematics, establishing mechanisms for form contributing to function. Here, we wanted to investigate relationships between form and ecological function, such as differences in dietary strategies and habitat preferences among fish species. This study aims to characterize and compare the kinematics, material properties, and vertebral morphology of four species of elongate fishes: Anoplarchus insignis, Anoplarchus purpurescens, Xiphister atropurpureus, and Xiphister mucosus. We hypothesized that these properties would differ among the four species due to their differential ecological niches. To calculate kinematic variables, we filmed these fishes swimming volitionally. We also measured body stiffness by bending the abdominal and tail regions of sacrificed individuals in different stages of dissection (whole body, removed skin, and removed muscle). Finally, we counted the number of vertebrae from CT scans of each species to quantify vertebral morphology. Principal component and linear discriminant analyses suggested that the elongate fish species can be distinguished from one another by their material properties, morphology, and swimming kinematics. With this information combined, we can draw connections between the physical properties of the fishes and their ecological niches.


Assuntos
Perciformes , Cauda/anatomia & histologia , Animais , Fenômenos Biomecânicos , Perciformes/anatomia & histologia , Perciformes/fisiologia , Especificidade da Espécie , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA