Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(5): 6337-6347, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38285501

RESUMO

The prompt visual response is considered to be a highly intuitive tenet among sensors. Therefore, plasmomechanical strain sensors, which exhibit dynamic structural color changes, have recently been developed by using mechanical stimulus-based elastomeric substrates for wearable sensors. However, the reported plasmomechanical strain sensors either lack directional sensitivity or require complex signal processing and device design strategies to ensure anisotropic optical responses. To the best of our knowledge, there have been no reports on utilizing anisotropic mechanical substrates to obtain directional optical responses. Herein, we propose an anisotropic plasmomechanical sensor to distinguish between the applied force direction and the force magnitude. We employ a simple strain-engineered topological elastomer to mechanically transform closely packed metallic nanoparticles (NPs) into anisotropic directional rearrangements depending on the applied force direction. The proposed structure consists of a heterogeneous-modulus elastomer that exhibits a highly direction-dependent Poisson effect owing to the periodically line-patterned local strain redistribution occurring due to the same magnitude of applied external force. Consequently, the reorientation of the self-assembled gold (Au)-NP array manifests dual anisotropy, i.e., force- and polarization-direction-dependent plasmonic coupling. The cost-effectiveness and simple design of our proposed heterogeneous-modulus platform pave the way for numerous optical applications based on dynamic transformation and topological inhomogeneities.

2.
Nanomaterials (Basel) ; 13(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38063691

RESUMO

The pursuit of enhancing the performance of triboelectric nanogenerators (TENGs) has led to the exploration of new materials with efficient charge-generating capabilities. Herein, we propose benzylpenicillin sodium salt (b-PEN) as a candidate biomaterial for the tribopositive layer owing to its superior electron-donating capability via the lone pairs of electrons on its sulfur atom, carbonyl, and amino functional groups. The proposed b-PEN TENG device exhibits promising electrical performance with an open-circuit voltage of 185 V, a short-circuit current of 4.52 µA, and a maximum power density of 72 µW/cm2 under force applied by a pneumatic air cylinder at 5 Hz. The biomechanical energy-harvesting capabilities of the b-PEN TENG device are demonstrated by actuating it with finger, hand, and foot movements. Moreover, the proposed TENG device is utilized to charge capacitors and power light-emitting diodes by scavenging the externally applied mechanical energy. This outstanding electrical performance makes b-PEN a promising tribopositive material.

3.
Adv Sci (Weinh) ; 10(30): e2304715, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37565602

RESUMO

On-demand photo-steerable amphibious rolling motions are generated by the structural engineering of monolithic soft locomotors. Photo-morphogenesis of azobenzene-functionalized liquid crystal polymer networks (azo-LCNs) is designed from spiral ribbon to helicoid helices, employing a 270° super-twisted nematic molecular geometry with aspect ratio variations of azo-LCN strips. Unlike the intermittent and biased rolling of spiral ribbon azo-LCNs with center-of-mass shifting, the axial torsional torque of helicoid azo-LCNs enables continuous and straight rolling at high rotation rates (≈720 rpm). Furthermore, center-tapered helicoid structures with wide edges are introduced for effectively accelerating photo-motilities while maintaining directional controllability. Irrespective of surface conditions, the photo-induced rotational torque of center-tapered helicoid azo-LCNs can be transferred to interacting surfaces, as manifested by steep slope climbing and paddle-like swimming multimodal motilities. Finally, the authors demonstrate continuous curvilinear guidance of soft locomotors, bypassing obstacles and reaching desired destinations through real-time on-demand photo-steering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA